def on_train_batch_end(self, ni, model, imgs, targets, paths, plots): # Callback runs on train batch end if plots: if ni == 0: if self.tb and not self.opt.sync_bn: # --sync known issue https://github.com/ultralytics/yolov5/issues/3754 with warnings.catch_warnings(): warnings.simplefilter( 'ignore') # suppress jit trace warning self.tb.add_graph( torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) if ni < 3: f = self.save_dir / f'train_batch{ni}.jpg' # filename plot_images(imgs, targets, paths, f) if self.wandb and ni == 10: files = sorted(self.save_dir.glob('train*.jpg')) self.wandb.log({ 'Mosaics': [ wandb.Image(str(f), caption=f.name) for f in files if f.exists() ] })
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots): # Callback runs on train batch end if plots: if ni == 0: with warnings.catch_warnings(): warnings.simplefilter( 'ignore') # suppress jit trace warning self.tb.add_graph( torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) if ni < 3: f = self.save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if self.wandb and ni == 10: files = sorted(self.save_dir.glob('train*.jpg')) self.wandb.log({ 'Mosaics': [ wandb.Image(str(f), caption=f.name) for f in files if f.exists() ] })
def train( hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze # Directories w = save_dir / 'weights' # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info( colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings if not evolve: with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Loggers data_dict = None if RANK in [-1, 0]: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance if loggers.wandb: data_dict = loggers.wandb.data_dict if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Config plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len( data_dict['names']) != 1 else data_dict['names'] # class names assert len( names ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check is_coco = isinstance(val_path, str) and val_path.endswith( 'coco/val2017.txt') # COCO dataset # Model check_suffix(weights, '.pt') # check weights pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download( weights) # download if not found locally ckpt = torch.load(weights, map_location='cpu' ) # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = [ 'anchor' ] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict( ) # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info( f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}' ) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create # Freeze freeze = [ f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0])) ] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance( v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) if opt.optimizer == 'Adam': optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum elif opt.optimizer == 'AdamW': optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({ 'params': g1, 'weight_decay': hyp['weight_decay'] }) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) LOGGER.info( f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") del g0, g1, g2 # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf' ] # linear scheduler = lr_scheduler.LambdaLR( optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' if epochs < start_epoch: LOGGER.info( f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs." ) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning( 'WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.' ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader( train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class nb = len(train_loader) # number of batches assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end') # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model attributes nl = de_parallel( model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640)**2 * 3 / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights( dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) stopper = EarlyStopping(patience=opt.patience) compute_loss = ComputeLoss(model) # init loss class LOGGER.info( f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info( ('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm( pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar optimizer.zero_grad() for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in [-1, 0]: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=[ 'yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights' ]) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP fi = fitness(np.array(results).reshape( 1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 'date': datetime.now().isoformat() } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 # stop = stopper(epoch=epoch, fitness=fi) # if RANK == 0: # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks # Stop DPP # with torch_distributed_zero_first(RANK): # if stop: # break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: LOGGER.info( f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.' ) for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = val.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=True, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run('on_train_end', last, best, plots, epoch, results) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") torch.cuda.empty_cache() return results
def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, ): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \ opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.notest, opt.nosave, opt.workers # Directories save_dir = Path(save_dir) wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Hyperparameters if isinstance(hyp, str): with open(hyp) as f: hyp = yaml.safe_load(f) # load hyps dict logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Configure plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + RANK) with open(data) as f: data_dict = yaml.safe_load(f) # data dict # Loggers loggers = {'wandb': None, 'tb': None} # loggers dict if RANK in [-1, 0]: # TensorBoard if not evolve: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") loggers['tb'] = SummaryWriter(str(save_dir)) # W&B opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None run_id = run_id if opt.resume else None # start fresh run if transfer learning wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb if loggers['wandb']: data_dict = wandb_logger.data_dict weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(RANK): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1) # Process 0 if RANK in [-1, 0]: testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1, workers=workers, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) if loggers['tb']: loggers['tb'].add_histogram('classes', c, 0) # TensorBoard # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' f'Using {dataloader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if RANK in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if RANK != -1: indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if RANK != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if RANK != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if loggers['tb'] and ni == 0: # TensorBoard with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress jit trace warning loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) elif plots and ni == 10 and loggers['wandb']: wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() # DDP process 0 or single-GPU if RANK in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not notest or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, _ = test.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_test, model=ema.ema, single_cls=single_cls, dataloader=testloader, save_dir=save_dir, save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if loggers['tb']: loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard if loggers['wandb']: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if loggers['wandb']: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') if plots: plot_results(save_dir=save_dir) # save as results.png if loggers['wandb']: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) if not evolve: if is_coco: # COCO dataset for m in [last, best] if best.exists() else [last]: # speed, mAP tests results, _, _ = test.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_test, conf_thres=0.001, iou_thres=0.7, model=attempt_load(m, device).half(), single_cls=single_cls, dataloader=testloader, save_dir=save_dir, save_json=True, plots=False) # Strip optimizers for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if loggers['wandb']: # Log the stripped model loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() torch.cuda.empty_cache() return results
def train(opt, device): epochs, batch_size, noval, nosave, workers, freeze, = \ opt.epochs, opt.batch_size, opt.noval, opt.nosave, opt.workers, opt.freeze d = datetime.datetime.now() run_id = '{:%Y-%m-%d__%H-%M-%S}'.format(d) save_dir = Path(opt.save_dir) / run_id # Directories w = save_dir / 'weights' # weights dir w.mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Get hyperparameter dict hyp, hyp_loss = get_hyperparameter_dict(opt.dataset_name, opt.hp_config) # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) tb_writer = SummaryWriter(save_dir) opt.img_dir = Path(opt.img_dir) # Config cuda = device.type != 'cpu' init_seeds(1 + RANK) # Dataloaders dataset_kwargs = {} if opt.train_img_res: dataset_kwargs = {'img_size': opt.train_img_res} dataset_splits = get_data_splits_by_name( data_root=opt.img_dir, dataset_name=opt.dataset_name, model_name=opt.model_name, batch_size=batch_size, num_workers=workers, distributed=(cuda and RANK != -1), **dataset_kwargs ) test_img_size = dataset_splits["test"].dataset._img_size train_img_size = dataset_splits["train"].dataset._img_size if opt.test_img_res: test_img_size = opt.test_img_res train_loader = dataset_splits["train"] dataset = train_loader.dataset nc = dataset.num_classes nb = len(train_loader) # number of batches # Model model = create_model( model_name=opt.model_name, pretraining_dataset=opt.pretraining_source_dataset, pretrained=opt.pretrained, num_classes=nc, progress=True, device=device, ) # Freeze freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print(f'freezing {k}') v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) if opt.adam: optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias") del g0, g1, g2 # Scheduler if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None start_epoch, best_fitness = 0, 0.0 # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Process 0 if RANK in [-1, 0]: # Anchors model.half().float() # pre-reduce anchor precision # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model parameters hyp['giou'] *= 3. / nl # scale to layers hyp['box'] = hyp['giou'] hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (train_img_size / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model eval_function = get_eval_function(dataset_name=opt.dataset_name, model_name=opt.model_name) criterion = YoloV5Loss( model=model, num_classes=nc, device=device, hyp_cfg=hyp_loss, ) if opt.eval_before_train: ap_dict = evaluate(model, eval_function, opt.dataset_name, opt.img_dir, nc, test_img_size, device) LOGGER.info(f'Eval metrics: {ap_dict}') # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) last_opt_step = -1 scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) stopper = EarlyStopping(patience=opt.patience) loss_giou_mean = AverageMeter() loss_conf_mean = AverageMeter() loss_cls_mean = AverageMeter() loss_mean = AverageMeter() LOGGER.info(f'Image sizes {train_img_size} train, {test_img_size} val\n' f'Using {train_loader.num_workers} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch model.train() mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, labels_length, _) in pbar: # batch ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() # Warmup if ni <= nw: xi = [0, nw] # x interp accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(train_img_size * 0.5, train_img_size * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_giou, loss_conf, loss_cls = criterion( pred, targets, labels_length, imgs.shape[-1] ) # Update running mean of tracked metrics loss_items = torch.tensor([loss_giou, loss_conf, loss_cls]).to(device) if RANK in (-1, 0): loss_giou_mean.update(loss_giou, imgs.size(0)) loss_conf_mean.update(loss_conf, imgs.size(0)) loss_cls_mean.update(loss_cls, imgs.size(0)) loss_mean.update(loss, imgs.size(0)) if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) # end batch # Scheduler scheduler.step() if RANK in [-1, 0]: for idx, param_group in enumerate(optimizer.param_groups): tb_writer.add_scalar(f'learning_rate/gr{idx}', param_group['lr'], epoch) tb_writer.add_scalar('train/giou_loss', loss_giou_mean.avg, epoch) tb_writer.add_scalar('train/conf_loss', loss_conf_mean.avg, epoch) tb_writer.add_scalar('train/cls_loss', loss_cls_mean.avg, epoch) tb_writer.add_scalar('train/loss', loss_mean.avg, epoch) # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if (not noval or final_epoch) and epoch % opt.eval_freq == 0: # Calculate mAP ap_dict = evaluate(ema.ema, eval_function, opt.dataset_name, opt.img_dir, nc, test_img_size, device) LOGGER.info(f'Eval metrics: {ap_dict}') tb_writer.add_scalar('eval/mAP', ap_dict['mAP'], epoch) for eval_key, eval_value in ap_dict.items(): if eval_key != 'mAP': tb_writer.add_scalar(f'ap_per_class/{eval_key}', eval_value, epoch) # Update best mAP fi = ap_dict['mAP'] if fi > best_fitness: best_fitness = fi # Save model if (not nosave) or final_epoch: # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # end epoch # end training if RANK in [-1, 0]: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') ckpt = torch.load(f, map_location=device) model = ckpt['ema' if ckpt.get('ema') else 'model'] model.float().eval() ap_dict = evaluate(model, eval_function, opt.dataset_name, opt.img_dir, nc, test_img_size, device) LOGGER.info(f'Eval metrics: {ap_dict}') LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") torch.cuda.empty_cache()
def train(hyp, opt, device, tb_writer=None): logger.info( colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) save_dir, epochs, batch_size, total_batch_size, weights, rank = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Directories wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Configure plots = not opt.evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.safe_load(f) # data dict # Logging- Doing this before checking the dataset. Might update data_dict loggers = {'wandb': None} # loggers dict if rank in [-1, 0]: opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith( '.pt') and os.path.isfile(weights) else None wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb data_dict = wandb_logger.data_dict if wandb_logger.wandb: weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes names = ['item'] if opt.single_cls and len( data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % ( len(names), nc, opt.data) # check ## hyps : command line hyperparameters (overwrites hyp.yaml) hyps = None try: if opt.hyps is not None and len(opt.hyps) > 0: ## hyps should evaluate to a python dict() hyps = ast.literal_eval(opt.hyps) ## add hyps to hyp (overwrite)... for k, v in hyps.items(): hyp[k] = v except: pfunc(f'ERROR: problem parsing hyps (hyperparameter string): {hyps}') # Print swagger job json string... if opt.job_str: pfunc(f'swagger job submitted:\n{opt.job_str}\n') # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = [ 'anchor' ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [ ] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info( 'Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) if hyp.get('freeze'): ## freeze backbone layers? N = int(hyp['freeze']) + 1 freeze = ['model.%s.' % x for x in range(N)] logger.info('Freezing first {} layers of network'.format(N)) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): logger.info('freezing %s' % k) v.requires_grad = False # ## create separate testing model # test_model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create # for k, v in test_model.named_parameters(): # v.requires_grad = False # freeze all layers # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({ 'params': pg1, 'weight_decay': hyp['weight_decay'] }) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR lr_epochs, init_epochs = epochs, 0 if hyp.get('init_epochs'): init_epochs = hyp['init_epochs'] lr_epochs += init_epochs if opt.linear_lr: lf = lambda x: (1 - x / (lr_epochs - 1)) * (1.0 - hyp['lrf']) + hyp[ 'lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], lr_epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if rank in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text( ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % ( weights, epochs) if epochs < start_epoch: logger.info( '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Fix Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[ -1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size ] # verify imgsz are gs-multiples # Fix Crop size if hyp.get('crop') and hyp['crop'] > 0: hyp['crop'] = check_img_size(hyp['crop'], gs) imgsz_test = hyp['crop'] # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: pfunc('DOING DATA PARALLEL MODE!!!!!!!!!!!') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # if rank in [-1, 0]: pfunc( f'RANK={rank} opt.world_size={opt.world_size} dist.get_rank()={dist.get_rank()} dist.get_world_size()={dist.get_world_size()}' ) # Trainloader trainloader, dataset = create_dataloader( train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, # cache='disk', cache_efficient_sampling=True, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(trainloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % ( mlc, nc, opt.data, nc - 1) # Testloader # test_batch_size = batch_size test_batch_size = 1 ## so test_batch_size-per-GPU = 1 (needed for DDP validation) testloader = create_dataloader(test_path, imgsz_test, test_batch_size, gs, opt, hyp=hyp, cache=opt.cache_images and not opt.notest, cache_efficient_sampling=True, drop_last=False, shuffle=False, rect=True, training=False, rank=rank, world_size=opt.world_size, workers=opt.workers, pad=0.5, prefix=colorstr('val: '))[0] # Process 0 new_best_model = False if rank in [-1, 0]: # orig_testloader = create_dataloader(test_path, imgsz_test, test_batch_size, gs, opt, # hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, # world_size=opt.world_size, workers=opt.workers, # # lazy_caching=True, # pad=0.5, prefix=colorstr('val: '))[0] if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes if plots: plot_labels(labels, names, save_dir, loggers) if tb_writer: tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and rank != -1: model = DDP( model, device_ids=[opt.local_rank], output_device=opt.local_rank, # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698 find_unused_parameters=any( isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640)**2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights( dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = t1 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class ###### resuming training run..... ######################################### if init_epochs > 0: nw = -1 logger.info( 'Stepping lr_scheduler forward {} epochs...'.format(init_epochs)) for i in range(init_epochs - 1): scheduler.step() ## check initial model performance.... # if init_epochs>0 and rank in [-1, 0]: # test.test(opt.data, # batch_size=test_batch_size, # imgsz=imgsz_test, # model=ema.ema, # single_cls=opt.single_cls, # dataloader=orig_testloader, # save_dir=save_dir, # verbose=True, # plots=False, # log_imgs=opt.log_imgs if wandb else 0, # compute_loss=compute_loss) ########################################################################### pfunc(f'Image sizes {imgsz} train, {imgsz_test} test\n' f'Using {trainloader.num_workers} trainloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices( range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: trainloader.sampler.set_epoch(epoch) pbar = enumerate(trainloader) if rank in [-1, 0]: t1 = time.time() num_img = 0 steps = list(range(100, 0, -2)) pfunc( '==========================================================================================================' ) pfunc(f'Epoch {epoch+1}/{epochs}') optimizer.zero_grad() # logging.StreamHandler.terminator = "" for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 ## simple progress indicator.... if rank in [-1, 0]: prog = int(np.ceil(100 * (i + 1) / nb)) while len(steps) > 0 and prog >= steps[-1]: step = steps.pop() # pfunc('.') if step % 10 == 0: pfunc(f' {step}%') # gpu_stats() # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device)) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: td = time.time() - t1 num_img += imgs.shape[0] imgs_sec = (num_img / td) * opt.world_size mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) # Plot if plots and ni < 5: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() # if tb_writer: # tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph # # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) elif plots and ni == 10 and wandb_logger.wandb: wandb_logger.log({ "Mosaics": [ wandb_logger.wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists() ] }) # end batch ------------------------------------------------------------------------------------------------ # end epoch ---------------------------------------------------------------------------------------------------- # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # logging.StreamHandler.terminator = "\n" if rank in [-1, 0]: pfunc( (' ' + '%10s' * 3) % ('total_min', 'gpu_mem', 'imgs_sec')) pfunc((' ' + '%10.2f' + '%10s' + '%10.4g') % (((time.time() - t1) / 60), mem, imgs_sec)) t1 = time.time() final_epoch = epoch + 1 == epochs ################################################################################## ## DDP VALIDATION.... # results = (mp, mr, mf1, map50, map)#, *(loss.cpu() / len(dataloader)).tolist()) try: results = test_ddp( opt, de_parallel(model), testloader, rank, device, names, ) if rank in [-1, 0]: pfunc(f'Validation Time: {(time.time()-t1)/60:0.2f} min') # Logging tags = [ 'train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/F1', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2' ] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if tb_writer: tb_writer.add_scalar(tag, x, epoch) # tensorboard if wandb_logger.wandb: wandb_logger.log({tag: x}) # W&B # Update best fitness # fitness = weighted combination of [P, R, F1, [email protected], [email protected]:0.95] fi = fitness(np.array(results).reshape(1, -1)) if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not opt.nosave) or (final_epoch and not opt.evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, # 'training_results': results_file.read_text(), 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: pfunc('Saving best model!') torch.save(ckpt, best) new_best_model = True best_model_msg = f'Best Model: Epoch {epoch+1}, mF1={results[2]:0.3f}, [email protected]:0.95={results[4]:0.3f}' if wandb_logger.wandb: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model( last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # Upload best model to s3 if (epoch + 1) % 10 == 0 and epoch > 15: if new_best_model: strip_optimizer(best) upload_model(opt) new_best_model = False # print best model so far pfunc(best_model_msg) # Upload output log to s3 upload_log(opt) ## END DDP VALIDATION except Exception as e: pfunc('Validation failed.') ################################################################ # end epoch ---------------------------------------------------------------------------------------------------- # end training ===================================================================================================== if rank in [-1, 0]: # ## Plots # if plots: # plot_results(save_dir=save_dir) # save as results.png # if wandb_logger.wandb: # files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] # wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files # if (save_dir / f).exists()]}) # ## Test best.pt # pfunc('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) # # if opt.data.endswith('coco.yaml') and nc == 80: # if COCO # for m in [best] if best.exists() else [last]: # speed, mAP tests # results, _, _ = test.test(data_dict, # batch_size=test_batch_size, # imgsz=imgsz_test, # model=attempt_load(m, device),#.half(), # single_cls=opt.single_cls, # dataloader=orig_testloader, # save_dir=save_dir, # # verbose=nc < 50 and final_epoch, # # plots=plots and final_epoch, # wandb_logger=wandb_logger, # plots=False, # # compute_loss=compute_loss, # ) # ## Strip optimizers # final = best if best.exists() else last # final model # for f in last, best: # if f.exists(): # strip_optimizer(f) # strip optimizers # if opt.bucket: # os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload # if wandb_logger.wandb and not opt.evolve: # Log the stripped model # wandb_logger.wandb.log_artifact(str(final), type='model', # name='run_' + wandb_logger.wandb_run.id + '_model', # aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() else: dist.destroy_process_group() torch.cuda.empty_cache() return results