src_path = opt.src_path
    tgt_path = opt.tgt_path

    swapper.swap_setup(src_path, tgt_path)

    if opt.post_tune:
        print('\n\t\t\tPersonalization: meta cycle finetune...')
        swapper.post_personalize(opt.output_dir,
                                 visualizer=None,
                                 verbose=False)
        # swapper.post_personalize(opt.output_dir, visualizer=visualizer, verbose=True, bidirection=opt.bidirection)

    print('\n\t\t\tPersonalization: completed...')

    # if a->b
    print('\n\t\t\tSwapping: {} wear the clothe of {}...'.format(
        src_path, tgt_path))
    preds = swapper.swap(src_info=swapper.src_info,
                         tgt_info=swapper.tsf_info,
                         target_part=opt.swap_part,
                         visualizer=visualizer)

    if opt.save_res:
        pred_output_dir = mkdir(os.path.join(opt.output_dir, 'swappers'))
        save_results(src_path, tgt_path, pred_output_dir, preds)

    # # else b->a
    # preds = swapper.swap(src_info=swapper.tgt_info, tgt_info=swapper.src_info,
    #                      target_part=opt.swap_part, visualizer=visualizer)
Exemple #2
0
def main(jsonPath):
    # options
    opt = option.parse(jsonPath, is_train=False)
    util.mkdirs((path for key, path in opt["path"].items()
                 if not key == "pretrain_model_G"))
    opt = option.dict_to_nonedict(opt)

    util.setup_logger(None,
                      opt["path"]["log"],
                      "test.log",
                      level=logging.INFO,
                      screen=True)
    logger = logging.getLogger("base")
    logger.info(option.dict2str(opt))
    # Create test dataset and dataloader
    test_loaders = []
    for phase, dataset_opt in sorted(opt["datasets"].items()):
        test_set = create_dataset(dataset_opt)
        test_loader = create_dataloader(test_set, dataset_opt)
        logger.info("Number of test images in [{:s}]: {:d}".format(
            dataset_opt["name"], len(test_set)))
        test_loaders.append(test_loader)

    # Create model
    model = create_model(opt)

    for test_loader in test_loaders:
        test_set_name = test_loader.dataset.opt["name"]
        logger.info("\nTesting [{:s}]...".format(test_set_name))
        # test_start_time = time.time()
        dataset_dir = os.path.join(opt["path"]["results_root"], test_set_name)
        util.mkdir(dataset_dir)

        test_results = OrderedDict()
        test_results["psnr"] = []
        test_results["ssim"] = []
        test_results["psnr_y"] = []
        test_results["ssim_y"] = []

        for data in test_loader:
            need_HR = False if test_loader.dataset.opt[
                "dataroot_HR"] is None else True

            model.feed_data(data, need_HR=need_HR)
            img_path = data["LR_path"][0]
            img_name = os.path.splitext(os.path.basename(img_path))[0]

            model.test()  # test
            visuals = model.get_current_visuals(need_HR=need_HR)

            sr_img = util.tensor2img(visuals["SR"])  # uint8

            # save images
            suffix = opt["suffix"]
            if suffix:
                save_img_path = os.path.join(dataset_dir,
                                             img_name + suffix + ".png")
            else:
                save_img_path = os.path.join(dataset_dir, img_name + ".png")
            util.save_img(sr_img, save_img_path)

            # calculate PSNR and SSIM
            if need_HR:
                gt_img = util.tensor2img(visuals["HR"])
                gt_img = gt_img / 255.0
                sr_img = sr_img / 255.0

                crop_border = test_loader.dataset.opt["scale"]
                cropped_sr_img = sr_img[crop_border:-crop_border,
                                        crop_border:-crop_border, :]
                cropped_gt_img = gt_img[crop_border:-crop_border,
                                        crop_border:-crop_border, :]

                psnr = util.calculate_psnr(cropped_sr_img * 255,
                                           cropped_gt_img * 255)
                ssim = util.calculate_ssim(cropped_sr_img * 255,
                                           cropped_gt_img * 255)
                test_results["psnr"].append(psnr)
                test_results["ssim"].append(ssim)

                if gt_img.shape[2] == 3:  # RGB image
                    sr_img_y = bgr2ycbcr(sr_img, only_y=True)
                    gt_img_y = bgr2ycbcr(gt_img, only_y=True)
                    cropped_sr_img_y = sr_img_y[crop_border:-crop_border,
                                                crop_border:-crop_border]
                    cropped_gt_img_y = gt_img_y[crop_border:-crop_border,
                                                crop_border:-crop_border]
                    psnr_y = util.calculate_psnr(cropped_sr_img_y * 255,
                                                 cropped_gt_img_y * 255)
                    ssim_y = util.calculate_ssim(cropped_sr_img_y * 255,
                                                 cropped_gt_img_y * 255)
                    test_results["psnr_y"].append(psnr_y)
                    test_results["ssim_y"].append(ssim_y)
                    logger.info(
                        "{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}."
                        .format(img_name, psnr, ssim, psnr_y, ssim_y))
                else:
                    logger.info(
                        "{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.".format(
                            img_name, psnr, ssim))
            else:
                logger.info(img_name)

        if need_HR:  # metrics
            # Average PSNR/SSIM results
            ave_psnr = sum(test_results["psnr"]) / len(test_results["psnr"])
            ave_ssim = sum(test_results["ssim"]) / len(test_results["ssim"])
            logger.info(
                "----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n"
                .format(test_set_name, ave_psnr, ave_ssim))
            if test_results["psnr_y"] and test_results["ssim_y"]:
                ave_psnr_y = sum(test_results["psnr_y"]) / len(
                    test_results["psnr_y"])
                ave_ssim_y = sum(test_results["ssim_y"]) / len(
                    test_results["ssim_y"])
                logger.info(
                    "----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n"
                    .format(ave_psnr_y, ave_ssim_y))
Exemple #3
0
def main(config_path):

    # Read a config file (.yml)
    with open(config_path, "r") as f:
        config = yaml.load(f)
        corpus = config['corpus']
        feature = config['feature']
        param = config['param']

    # TODO: Solve conflict (batch_norm & layer norm)
    if corpus['label_type'] == 'phone61':
        output_size = 61
    elif corpus['label_type'] == 'phone48':
        output_size = 48
    elif corpus['label_type'] == 'phone39':
        output_size = 39
    elif corpus['label_type'] == 'character':
        output_size = 30

    # Model setting
    CTCModel = load(model_type=config['model_name'])
    network = CTCModel(batch_size=param['batch_size'],
                       input_size=feature['input_size'] * feature['num_stack'],
                       num_cell=param['num_cell'],
                       num_layer=param['num_layer'],
                       output_size=output_size,
                       clip_gradients=param['clip_grad'],
                       clip_activation=param['clip_activation'],
                       dropout_ratio_input=param['dropout_input'],
                       dropout_ratio_hidden=param['dropout_hidden'],
                       num_proj=param['num_proj'],
                       weight_decay=param['weight_decay'])

    network.model_name = config['model_name'].upper()
    network.model_name += '_' + str(param['num_cell'])
    network.model_name += '_' + str(param['num_layer'])
    network.model_name += '_' + param['optimizer']
    network.model_name += '_lr' + str(param['learning_rate'])
    if param['num_proj'] != 0:
        network.model_name += '_proj' + str(param['num_proj'])
    if feature['num_stack'] != 1:
        network.model_name += '_stack' + str(feature['num_stack'])
    if param['weight_decay'] != 0:
        network.model_name += '_weightdecay' + str(param['weight_decay'])

    # Set save path
    network.model_dir = mkdir('/n/sd8/inaguma/result/timit/ctc/')
    network.model_dir = mkdir_join(network.model_dir, corpus['label_type'])
    network.model_dir = mkdir_join(network.model_dir, network.model_name)

    # Reset model directory
    if not isfile(join(network.model_dir, 'complete.txt')):
        tf.gfile.DeleteRecursively(network.model_dir)
        tf.gfile.MakeDirs(network.model_dir)
    else:
        raise ValueError('File exists.')

    # Set process name
    setproctitle('ctc_timit_' +
                 corpus['label_type'] + '_' + param['optimizer'])

    # Save config file
    shutil.copyfile(config_path, join(network.model_dir, 'config.yml'))

    sys.stdout = open(join(network.model_dir, 'train.log'), 'w')
    print(network.model_name)
    do_train(network=network,
             optimizer=param['optimizer'],
             learning_rate=param['learning_rate'],
             batch_size=param['batch_size'],
             epoch_num=param['num_epoch'],
             label_type=corpus['label_type'],
             num_stack=feature['num_stack'],
             num_skip=feature['num_skip'])
    sys.stdout = sys.__stdout__
Exemple #4
0
def main():
    #### options
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt', type=str, help='Path to option YAML file.')
    parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=True)
    label_path = opt['datasets']['val']['dataroot_label_file']

    #### distributed training settings
    if args.launcher == 'none':  # disabled distributed training
        opt['dist'] = False
        rank = -1
        print('Disabled distributed training.')
    else:
        opt['dist'] = True
        init_dist()
        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

    #### loading resume state if exists
    if opt['path'].get('resume_state', None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(opt['path']['resume_state'],
                                  map_location=lambda storage, loc: storage.cuda(device_id))
        option.check_resume(opt, resume_state['iter'])  # check resume options
    else:
        resume_state = None

    #### mkdir and loggers
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            util.mkdir_and_rename(
                opt['path']['experiments_root'])  # rename experiment folder if exists
            util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
                         and 'pretrain_model' not in key and 'resume' not in key))

        # config loggers. Before it, the log will not work
        util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        logger = logging.getLogger('base')
        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt['use_tb_logger'] and 'debug' not in opt['name']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
    else:
        util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
        logger = logging.getLogger('base')

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    #### random seed
    seed = opt['train']['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
    if rank <= 0:
        logger.info('Random seed: {}'.format(seed))
    util.set_random_seed(seed)

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    #### create train and val dataloader
    dataset_ratio = 200  # enlarge the size of each epoch
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            train_set = create_dataset(dataset_opt)
            train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
            total_iters = int(opt['train']['niter'])
            total_epochs = int(math.ceil(total_iters / train_size))
            if opt['dist']:
                train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
                total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
            else:
                train_sampler = None
            train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
            if rank <= 0:
                logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
                    len(train_set), train_size))
                logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
                    total_epochs, total_iters))
        elif phase == 'val':
            val_set = create_dataset(dataset_opt,is_train = False)
            val_loader = create_dataloader(val_set, dataset_opt, opt, None)
            if rank <= 0:
                logger.info('Number of val images in [{:s}]: {:d}'.format(
                    dataset_opt['name'], len(val_set)))
        else:
            raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
    assert train_loader is not None

    #### create model
    model = create_model(opt)

    #### resume training
    if resume_state:
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))

        start_epoch = resume_state['epoch']
        current_step = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0

    #### training
    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
    for epoch in range(start_epoch, total_epochs + 1):
        if opt['dist']:
            train_sampler.set_epoch(epoch)
        for _, train_data in enumerate(train_loader):
            current_step += 1
            if current_step > total_iters:
                break
            #### update learning rate
            model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])

            #### training
            model.feed_data(train_data)
            model.optimize_parameters(current_step)

            #### log
            if current_step % opt['logger']['print_freq'] == 0:
                logs = model.get_current_log()
                message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
                for v in model.get_current_learning_rate():
                    message += '{:.3e},'.format(v)
                message += ')] '
                for k, v in logs.items():
                    message += '{:s}: {:.4e} '.format(k, v)
                    # tensorboard logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        if rank <= 0:
                            tb_logger.add_scalar(k, v, current_step)
                if rank <= 0:
                    logger.info(message)
            #### validation
            if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
                if rank <= 0:  #
                    # does not support multi-GPU validation
                    pbar = util.ProgressBar(len(val_loader))
                    idx = 0
                    for val_data in val_loader:
                        idx += 1
                        img_name = os.path.splitext(os.path.basename(val_data['img1_path'][0]))[0]
                        img_dir = os.path.join(opt['path']['val_images'], str(current_step))
                        util.mkdir(img_dir)
                        f = open(os.path.join(img_dir, 'predict_score.txt'), 'a')

                        model.feed_data(val_data)
                        model.test()

                        visuals = model.get_current_visuals()
                        predict_score1 = visuals['predict_score1'].numpy()
                        # Save predict scores
                        f.write('%s  %f\n' % (img_name + '.png', predict_score1))
                        f.close()
                        pbar.update('Test {}'.format(img_name))

                    # calculate accuracy
                    aligned_pair_accuracy, accuracy_esrganbig, accuracy_srganbig = rank_pair_test(\
                        os.path.join(img_dir, 'predict_score.txt'), label_path)

                    # log
                    logger.info(
                        '# Validation # Accuracy: {:.4e}, Accuracy_pair1_class1: {:.4e}, Accuracy_pair1_class2: {:.4e} '.format(
                            aligned_pair_accuracy, accuracy_esrganbig, accuracy_srganbig))
                    logger_val = logging.getLogger('val')  # validation logger
                    logger_val.info(
                        '<epoch:{:3d}, iter:{:8,d}> Accuracy: {:.4e}, Accuracy_pair1_class1: {:.4e}, Accuracy_pair1_class2: {:.4e} '.format(
                            epoch, current_step, aligned_pair_accuracy, accuracy_esrganbig, accuracy_srganbig))

                    # tensorboard logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        tb_logger.add_scalar('Accuracy', aligned_pair_accuracy, current_step)
                        tb_logger.add_scalar('Accuracy_pair1_class1', accuracy_esrganbig, current_step)
                        tb_logger.add_scalar('Accuracy_pair1_class2', accuracy_srganbig, current_step)
            #### save models and training states
            if current_step % opt['logger']['save_checkpoint_freq'] == 0:
                if rank <= 0:
                    logger.info('Saving models and training states.')
                    model.save(current_step)
                    model.save_training_state(epoch, current_step)

    if rank <= 0:
        logger.info('Saving the final model.')
        model.save('latest')
        logger.info('End of training.')
        tb_logger.close()
Exemple #5
0
 def summary_dir(self):
   return ut.mkdir(pj(self.resdir, 'summary'))
Exemple #6
0
    if test_opt.ip:
        visualizer = VisdomVisualizer(env=test_opt.name,
                                      ip=test_opt.ip,
                                      port=test_opt.port)
    else:
        visualizer = None

    # set imitator
    imitator = Imitator(test_opt)

    if test_opt.post_tune:
        adaptive_personalize(test_opt, imitator, visualizer)

    imitator.personalize(test_opt.src_path, visualizer=visualizer)
    print('\n\t\t\tPersonalization: completed...')

    if test_opt.save_res:
        pred_output_dir = mkdir(os.path.join(test_opt.output_dir, 'imitators'))
        pred_output_dir = clear_dir(pred_output_dir)
    else:
        pred_output_dir = None

    print('\n\t\t\tImitating `{}`'.format(test_opt.tgt_path))
    tgt_paths = scan_tgt_paths(test_opt.tgt_path, itv=1)
    imitator.inference(tgt_paths,
                       tgt_smpls=None,
                       cam_strategy='smooth',
                       output_dir=pred_output_dir,
                       visualizer=visualizer,
                       verbose=True)
Exemple #7
0
def fit(model, opt, dataloaders, steps_states, data_params, loggers):
    # read data_params
    batch_size = data_params['batch_size']
    virtual_batch_size = data_params['virtual_batch_size']
    total_iters = data_params['total_iters']
    total_epochs = data_params['total_epochs']

    # read steps_states
    start_epoch = steps_states["start_epoch"]
    current_step = steps_states["current_step"]
    virtual_step = steps_states["virtual_step"]

    # read loggers
    logger = util.get_root_logger()
    tb_logger = loggers["tb_logger"]
    
    # training
    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
    try:
        timer = metrics.Timer()  # iteration timer
        timerData = metrics.TickTock()  # data timer
        timerEpoch = metrics.TickTock()  # epoch timer
        # outer loop for different epochs
        for epoch in range(start_epoch, (total_epochs * (virtual_batch_size // batch_size))+1):
            timerData.tick()
            timerEpoch.tick()

            # inner iteration loop within one epoch
            for n, train_data in enumerate(dataloaders['train'], start=1):
                timerData.tock()

                virtual_step += 1
                take_step = False
                if virtual_step > 0 and virtual_step * batch_size % virtual_batch_size == 0:
                    current_step += 1
                    take_step = True
                    if current_step > total_iters:
                        break

                # training
                model.feed_data(train_data)  # unpack data from dataset and apply preprocessing
                model.optimize_parameters(virtual_step)  # calculate loss functions, get gradients, update network weights

                # log
                def eta(t_iter):
                    # calculate training ETA in hours
                    return (t_iter * (opt['train']['niter'] - current_step)) / 3600 if t_iter > 0 else 0

                if current_step % opt['logger']['print_freq'] == 0 and take_step:
                    # iteration end time
                    avg_time = timer.get_average_and_reset()
                    avg_data_time = timerData.get_average_and_reset()

                    # print training losses and save logging information to disk
                    message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}, t:{:.4f}s, td:{:.4f}s, eta:{:.4f}h> '.format(
                        epoch, current_step, model.get_current_learning_rate(current_step), avg_time, 
                        avg_data_time, eta(avg_time))
                    
                    # tensorboard training logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        if current_step % opt['logger'].get('tb_sample_rate', 1) == 0: # Reduce rate of tb logs
                            # tb_logger.add_scalar('loss/nll', nll, current_step)
                            tb_logger.add_scalar('lr/base', model.get_current_learning_rate(), current_step)
                            tb_logger.add_scalar('time/iteration', timer.get_last_iteration(), current_step)
                            tb_logger.add_scalar('time/data', timerData.get_last_iteration(), current_step)

                    logs = model.get_current_log()
                    for k, v in logs.items():
                        message += '{:s}: {:.4e} '.format(k, v)
                        # tensorboard loss logger
                        if opt['use_tb_logger'] and 'debug' not in opt['name']:
                            if current_step % opt['logger'].get('tb_sample_rate', 1) == 0: # Reduce rate of tb logs
                                tb_logger.add_scalar(k, v, current_step)
                            # tb_logger.flush()
                    logger.info(message)

                    # start time for next iteration #TODO:skip the validation time from calculation
                    timer.tick()

                # update learning rate
                if model.optGstep and model.optDstep and take_step:
                    model.update_learning_rate(current_step, warmup_iter=opt['train'].get('warmup_iter', -1))
                
                # save latest models and training states every <save_checkpoint_freq> iterations
                if current_step % opt['logger']['save_checkpoint_freq'] == 0 and take_step:
                    if model.swa: 
                        model.save(current_step, opt['logger']['overwrite_chkp'], loader=dataloaders['train'])
                    else:
                        model.save(current_step, opt['logger']['overwrite_chkp'])
                    model.save_training_state(
                        epoch=epoch + (n >= len(dataloaders['train'])),
                        iter_step=current_step,
                        latest=opt['logger']['overwrite_chkp']
                    )
                    logger.info('Models and training states saved.')

                # validation
                if dataloaders.get('val', None) and current_step % opt['train']['val_freq'] == 0 and take_step:
                    val_metrics = metrics.MetricsDict(metrics=opt['train'].get('metrics', None))
                    nlls = []
                    for val_data in dataloaders['val']:
                        
                        model.feed_data(val_data)  # unpack data from data loader
                        model.test()  # run inference
                        if hasattr(model, 'nll'):
                            nll = model.nll if model.nll else 0
                            nlls.append(nll)

                        """
                        Get Visuals
                        """
                        visuals = model.get_current_visuals()  # get image results
                        img_name = os.path.splitext(os.path.basename(val_data['LR_path'][0]))[0]
                        img_dir = os.path.join(opt['path']['val_images'], img_name)
                        util.mkdir(img_dir)
                        
                        # Save SR images for reference
                        sr_img = None
                        if hasattr(model, 'heats'):  # SRFlow
                            opt['train']['val_comparison'] = False
                            for heat in model.heats:
                                for i in range(model.n_sample):
                                    sr_img = tensor2np(visuals['SR', heat, i], denormalize=opt['datasets']['train']['znorm'])
                                    if opt['train']['overwrite_val_imgs']:
                                        save_img_path = os.path.join(img_dir,
                                                                '{:s}_h{:03d}_s{:d}.png'.format(img_name, int(heat * 100), i))
                                    else:
                                        save_img_path = os.path.join(img_dir,
                                                                '{:s}_{:09d}_h{:03d}_s{:d}.png'.format(img_name,
                                                                                                        current_step,
                                                                                                        int(heat * 100), i))
                                    util.save_img(sr_img, save_img_path)
                        else:  # regular SR
                            sr_img = tensor2np(visuals['SR'], denormalize=opt['datasets']['train']['znorm'])
                            if opt['train']['overwrite_val_imgs']:
                                save_img_path = os.path.join(img_dir, '{:s}.png'.format(img_name))
                            else:
                                save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step))
                            if not opt['train']['val_comparison']:
                                util.save_img(sr_img, save_img_path)
                        assert sr_img is not None

                        # Save GT images for reference
                        gt_img = tensor2np(visuals['HR'], denormalize=opt['datasets']['train']['znorm'])
                        if opt['train']['save_gt']:
                            save_img_path_gt = os.path.join(img_dir,
                                                            '{:s}_GT.png'.format(img_name))
                            if not os.path.isfile(save_img_path_gt):
                                util.save_img(gt_img, save_img_path_gt)

                        # Save LQ images for reference
                        if opt['train']['save_lr']:
                            save_img_path_lq = os.path.join(img_dir,
                                                            '{:s}_LQ.png'.format(img_name))
                            if not os.path.isfile(save_img_path_lq):
                                lq_img = tensor2np(visuals['LR'], denormalize=opt['datasets']['train']['znorm'])
                                util.save_img(lq_img, save_img_path_lq, scale=opt['scale'])

                        # save single images or LQ / SR comparison
                        if opt['train']['val_comparison']:
                            lr_img = tensor2np(visuals['LR'], denormalize=opt['datasets']['train']['znorm'])
                            util.save_img_comp([lr_img, sr_img], save_img_path)
                        # else:
                            # util.save_img(sr_img, save_img_path)

                        """
                        Get Metrics
                        # TODO: test using tensor based metrics (batch) instead of numpy.
                        """
                        val_metrics.calculate_metrics(sr_img, gt_img, crop_size=opt['scale'])  # , only_y=True)

                    avg_metrics = val_metrics.get_averages()
                    if nlls:
                        avg_nll = sum(nlls) / len(nlls)
                    del val_metrics

                    # log
                    logger_m = ''
                    for r in avg_metrics:
                        formatted_res = r['name'].upper() + ': {:.5g}, '.format(r['average'])
                        logger_m += formatted_res
                    if nlls:
                        logger_m += 'avg_nll: {:.4e}  '.format(avg_nll)

                    logger.info('# Validation # ' + logger_m[:-2])
                    logger_val = logging.getLogger('val')  # validation logger
                    logger_val.info('<epoch:{:3d}, iter:{:8,d}> '.format(epoch, current_step) + logger_m[:-2])
                    # memory_usage = torch.cuda.memory_allocated()/(1024.0 ** 3) # in GB
                    
                    # tensorboard logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        for r in avg_metrics:
                            tb_logger.add_scalar(r['name'], r['average'], current_step)
                            if nlls:
                                tb_logger.add_scalar('average nll', avg_nll, current_step)
                            # tb_logger.flush()
                            # tb_logger_valid.add_scalar(r['name'], r['average'], current_step)
                            # tb_logger_valid.flush()
                    
                timerData.tick()
            
            timerEpoch.tock()
            logger.info('End of epoch {} / {} \t Time Taken: {:.4f} sec'.format(
                epoch, total_epochs, timerEpoch.get_last_iteration()))

        logger.info('Saving the final model.')
        if model.swa:
            model.save('latest', loader=dataloaders['train'])
        else:
            model.save('latest')
        logger.info('End of training.')

    except KeyboardInterrupt:
        # catch a KeyboardInterrupt and save the model and state to resume later
        if model.swa:
            model.save(current_step, True, loader=dataloaders['train'])
        else:
            model.save(current_step, True)
        model.save_training_state(epoch + (n >= len(dataloaders['train'])), current_step, True)
        logger.info('Training interrupted. Latest models and training states saved.')
Exemple #8
0
 def weights_best(self):
     path = "weights/{}/best".format(self.cnf['name'])
     mkdir(path)
     return os.path.join(path, '{epoch}_{timestamp}_{loss}.pkl')
def main():

    ############################################
    #
    #           set options
    #
    ############################################

    parser = argparse.ArgumentParser()
    parser.add_argument('--opt', type=str, help='Path to option YAML file.')
    parser.add_argument('--launcher',
                        choices=['none', 'pytorch'],
                        default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=True)

    ############################################
    #
    #           distributed training settings
    #
    ############################################

    if args.launcher == 'none':  # disabled distributed training
        opt['dist'] = False
        rank = -1
        print('Disabled distributed training.')
    else:
        opt['dist'] = True
        init_dist()
        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

        print("Rank:", rank)
        print("------------------DIST-------------------------")

    ############################################
    #
    #           loading resume state if exists
    #
    ############################################

    if opt['path'].get('resume_state', None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(
            opt['path']['resume_state'],
            map_location=lambda storage, loc: storage.cuda(device_id))
        option.check_resume(opt, resume_state['iter'])  # check resume options
    else:
        resume_state = None

    ############################################
    #
    #           mkdir and loggers
    #
    ############################################

    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            util.mkdir_and_rename(
                opt['path']
                ['experiments_root'])  # rename experiment folder if exists

            util.mkdirs(
                (path for key, path in opt['path'].items()
                 if not key == 'experiments_root'
                 and 'pretrain_model' not in key and 'resume' not in key))

        # config loggers. Before it, the log will not work
        util.setup_logger('base',
                          opt['path']['log'],
                          'train_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)

        util.setup_logger('base_val',
                          opt['path']['log'],
                          'val_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)

        logger = logging.getLogger('base')
        logger_val = logging.getLogger('base_val')

        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt['use_tb_logger'] and 'debug' not in opt['name']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    'You are using PyTorch {}. Tensorboard will use [tensorboardX]'
                    .format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
    else:
        # config loggers. Before it, the log will not work
        util.setup_logger('base',
                          opt['path']['log'],
                          'train_',
                          level=logging.INFO,
                          screen=True)

        print("set train log")

        util.setup_logger('base_val',
                          opt['path']['log'],
                          'val_',
                          level=logging.INFO,
                          screen=True)

        print("set val log")

        logger = logging.getLogger('base')

        logger_val = logging.getLogger('base_val')

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    #### random seed
    seed = opt['train']['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
    if rank <= 0:
        logger.info('Random seed: {}'.format(seed))
    util.set_random_seed(seed)

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    ############################################
    #
    #           create train and val dataloader
    #
    ############################################
    ####

    # dataset_ratio = 200  # enlarge the size of each epoch, todo: what it is
    dataset_ratio = 1  # enlarge the size of each epoch, todo: what it is
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            train_set = create_dataset(dataset_opt)
            train_size = int(
                math.ceil(len(train_set) / dataset_opt['batch_size']))
            # total_iters = int(opt['train']['niter'])
            # total_epochs = int(math.ceil(total_iters / train_size))

            total_iters = train_size
            total_epochs = int(opt['train']['epoch'])

            if opt['dist']:
                train_sampler = DistIterSampler(train_set, world_size, rank,
                                                dataset_ratio)
                # total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
                total_epochs = int(opt['train']['epoch'])
                if opt['train']['enable'] == False:
                    total_epochs = 1
            else:
                train_sampler = None
            train_loader = create_dataloader(train_set, dataset_opt, opt,
                                             train_sampler)
            if rank <= 0:
                logger.info(
                    'Number of train images: {:,d}, iters: {:,d}'.format(
                        len(train_set), train_size))
                logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
                    total_epochs, total_iters))
        elif phase == 'val':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(val_set, dataset_opt, opt, None)
            if rank <= 0:
                logger.info('Number of val images in [{:s}]: {:d}'.format(
                    dataset_opt['name'], len(val_set)))
        else:
            raise NotImplementedError(
                'Phase [{:s}] is not recognized.'.format(phase))

    assert train_loader is not None

    ############################################
    #
    #          create model
    #
    ############################################
    ####

    model = create_model(opt)

    print("Model Created! ")

    #### resume training
    if resume_state:
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))

        start_epoch = resume_state['epoch']
        current_step = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0
        print("Not Resume Training")

    ############################################
    #
    #          training
    #
    ############################################
    ####

    ####
    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(
        start_epoch, current_step))
    Avg_train_loss = AverageMeter()  # total
    if (opt['train']['pixel_criterion'] == 'cb+ssim'):
        Avg_train_loss_pix = AverageMeter()
        Avg_train_loss_ssim = AverageMeter()
    elif (opt['train']['pixel_criterion'] == 'cb+ssim+vmaf'):
        Avg_train_loss_pix = AverageMeter()
        Avg_train_loss_ssim = AverageMeter()
        Avg_train_loss_vmaf = AverageMeter()
    elif (opt['train']['pixel_criterion'] == 'ssim'):
        Avg_train_loss_ssim = AverageMeter()
    elif (opt['train']['pixel_criterion'] == 'msssim'):
        Avg_train_loss_msssim = AverageMeter()
    elif (opt['train']['pixel_criterion'] == 'cb+msssim'):
        Avg_train_loss_pix = AverageMeter()
        Avg_train_loss_msssim = AverageMeter()

    saved_total_loss = 10e10
    saved_total_PSNR = -1

    for epoch in range(start_epoch, total_epochs):

        ############################################
        #
        #          Start a new epoch
        #
        ############################################

        # Turn into training mode
        #model = model.train()

        # reset total loss
        Avg_train_loss.reset()
        current_step = 0

        if (opt['train']['pixel_criterion'] == 'cb+ssim'):
            Avg_train_loss_pix.reset()
            Avg_train_loss_ssim.reset()
        elif (opt['train']['pixel_criterion'] == 'cb+ssim+vmaf'):
            Avg_train_loss_pix.reset()
            Avg_train_loss_ssim.reset()
            Avg_train_loss_vmaf.reset()
        elif (opt['train']['pixel_criterion'] == 'ssim'):
            Avg_train_loss_ssim = AverageMeter()
        elif (opt['train']['pixel_criterion'] == 'msssim'):
            Avg_train_loss_msssim = AverageMeter()
        elif (opt['train']['pixel_criterion'] == 'cb+msssim'):
            Avg_train_loss_pix = AverageMeter()
            Avg_train_loss_msssim = AverageMeter()

        if opt['dist']:
            train_sampler.set_epoch(epoch)

        for train_idx, train_data in enumerate(train_loader):

            if 'debug' in opt['name']:

                img_dir = os.path.join(opt['path']['train_images'])
                util.mkdir(img_dir)

                LQ = train_data['LQs']
                GT = train_data['GT']

                GT_img = util.tensor2img(GT)  # uint8

                save_img_path = os.path.join(
                    img_dir, '{:4d}_{:s}.png'.format(train_idx, 'debug_GT'))
                util.save_img(GT_img, save_img_path)

                for i in range(5):
                    LQ_img = util.tensor2img(LQ[0, i, ...])  # uint8
                    save_img_path = os.path.join(
                        img_dir,
                        '{:4d}_{:s}_{:1d}.png'.format(train_idx, 'debug_LQ',
                                                      i))
                    util.save_img(LQ_img, save_img_path)

                if (train_idx >= 3):
                    break

            if opt['train']['enable'] == False:
                message_train_loss = 'None'
                break

            current_step += 1
            if current_step > total_iters:
                print("Total Iteration Reached !")
                break
            #### update learning rate
            if opt['train']['lr_scheme'] == 'ReduceLROnPlateau':
                pass
            else:
                model.update_learning_rate(
                    current_step, warmup_iter=opt['train']['warmup_iter'])

            #### training
            model.feed_data(train_data)

            # if opt['train']['lr_scheme'] == 'ReduceLROnPlateau':
            #    model.optimize_parameters_without_schudlue(current_step)
            # else:
            model.optimize_parameters(current_step)

            if (opt['train']['pixel_criterion'] == 'cb+ssim'):
                Avg_train_loss.update(model.log_dict['total_loss'], 1)
                Avg_train_loss_pix.update(model.log_dict['l_pix'], 1)
                Avg_train_loss_ssim.update(model.log_dict['ssim_loss'], 1)
            elif (opt['train']['pixel_criterion'] == 'cb+ssim+vmaf'):
                Avg_train_loss.update(model.log_dict['total_loss'], 1)
                Avg_train_loss_pix.update(model.log_dict['l_pix'], 1)
                Avg_train_loss_ssim.update(model.log_dict['ssim_loss'], 1)
                Avg_train_loss_vmaf.update(model.log_dict['vmaf_loss'], 1)
            elif (opt['train']['pixel_criterion'] == 'ssim'):
                Avg_train_loss.update(model.log_dict['total_loss'], 1)
                Avg_train_loss_ssim.update(model.log_dict['ssim_loss'], 1)
            elif (opt['train']['pixel_criterion'] == 'msssim'):
                Avg_train_loss.update(model.log_dict['total_loss'], 1)
                Avg_train_loss_msssim.update(model.log_dict['msssim_loss'], 1)
            elif (opt['train']['pixel_criterion'] == 'cb+msssim'):
                Avg_train_loss.update(model.log_dict['total_loss'], 1)
                Avg_train_loss_pix.update(model.log_dict['l_pix'], 1)
                Avg_train_loss_msssim.update(model.log_dict['msssim_loss'], 1)
            else:
                Avg_train_loss.update(model.log_dict['l_pix'], 1)

            # add total train loss
            if (opt['train']['pixel_criterion'] == 'cb+ssim'):
                message_train_loss = ' pix_avg_loss: {:.4e}'.format(
                    Avg_train_loss_pix.avg)
                message_train_loss += ' ssim_avg_loss: {:.4e}'.format(
                    Avg_train_loss_ssim.avg)
                message_train_loss += ' total_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)
            elif (opt['train']['pixel_criterion'] == 'cb+ssim+vmaf'):
                message_train_loss = ' pix_avg_loss: {:.4e}'.format(
                    Avg_train_loss_pix.avg)
                message_train_loss += ' ssim_avg_loss: {:.4e}'.format(
                    Avg_train_loss_ssim.avg)
                message_train_loss += ' vmaf_avg_loss: {:.4e}'.format(
                    Avg_train_loss_vmaf.avg)
                message_train_loss += ' total_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)
            elif (opt['train']['pixel_criterion'] == 'ssim'):
                message_train_loss = ' ssim_avg_loss: {:.4e}'.format(
                    Avg_train_loss_ssim.avg)
                message_train_loss += ' total_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)
            elif (opt['train']['pixel_criterion'] == 'msssim'):
                message_train_loss = ' msssim_avg_loss: {:.4e}'.format(
                    Avg_train_loss_msssim.avg)
                message_train_loss += ' total_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)
            elif (opt['train']['pixel_criterion'] == 'cb+msssim'):
                message_train_loss = ' pix_avg_loss: {:.4e}'.format(
                    Avg_train_loss_pix.avg)
                message_train_loss += ' msssim_avg_loss: {:.4e}'.format(
                    Avg_train_loss_msssim.avg)
                message_train_loss += ' total_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)
            else:
                message_train_loss = ' train_avg_loss: {:.4e}'.format(
                    Avg_train_loss.avg)

            #### log
            if current_step % opt['logger']['print_freq'] == 0:
                logs = model.get_current_log()
                message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(
                    epoch, current_step)
                for v in model.get_current_learning_rate():
                    message += '{:.3e},'.format(v)
                message += ')] '
                for k, v in logs.items():
                    message += '{:s}: {:.4e} '.format(k, v)
                    # tensorboard logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        if rank <= 0:
                            tb_logger.add_scalar(k, v, current_step)

                message += message_train_loss

                if rank <= 0:
                    logger.info(message)

        ############################################
        #
        #        end of one epoch, save epoch model
        #
        ############################################

        #### save models and training states
        # if current_step % opt['logger']['save_checkpoint_freq'] == 0:
        #     if rank <= 0:
        #         logger.info('Saving models and training states.')
        #         model.save(current_step)
        #         model.save('latest')
        #         # model.save_training_state(epoch, current_step)
        #         # todo delete previous weights
        #         previous_step = current_step - opt['logger']['save_checkpoint_freq']
        #         save_filename = '{}_{}.pth'.format(previous_step, 'G')
        #         save_path = os.path.join(opt['path']['models'], save_filename)
        #         if os.path.exists(save_path):
        #             os.remove(save_path)

        if epoch == 1:
            save_filename = '{:04d}_{}.pth'.format(0, 'G')
            save_path = os.path.join(opt['path']['models'], save_filename)
            if os.path.exists(save_path):
                os.remove(save_path)

        save_filename = '{:04d}_{}.pth'.format(epoch - 1, 'G')
        save_path = os.path.join(opt['path']['models'], save_filename)
        if os.path.exists(save_path):
            os.remove(save_path)

        if rank <= 0:
            logger.info('Saving models and training states.')
            save_filename = '{:04d}'.format(epoch)
            model.save(save_filename)
            # model.save('latest')
            # model.save_training_state(epoch, current_step)

        ############################################
        #
        #          end of one epoch, do validation
        #
        ############################################

        #### validation
        #if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
        if opt['datasets'].get('val', None):
            if opt['model'] in [
                    'sr', 'srgan'
            ] and rank <= 0:  # image restoration validation
                # does not support multi-GPU validation
                pbar = util.ProgressBar(len(val_loader))
                avg_psnr = 0.
                idx = 0
                for val_data in val_loader:
                    idx += 1
                    img_name = os.path.splitext(
                        os.path.basename(val_data['LQ_path'][0]))[0]
                    img_dir = os.path.join(opt['path']['val_images'], img_name)
                    util.mkdir(img_dir)

                    model.feed_data(val_data)
                    model.test()
                    visuals = model.get_current_visuals()
                    sr_img = util.tensor2img(visuals['rlt'])  # uint8
                    gt_img = util.tensor2img(visuals['GT'])  # uint8

                    # Save SR images for reference
                    save_img_path = os.path.join(
                        img_dir,
                        '{:s}_{:d}.png'.format(img_name, current_step))
                    #util.save_img(sr_img, save_img_path)

                    # calculate PSNR
                    sr_img, gt_img = util.crop_border([sr_img, gt_img],
                                                      opt['scale'])
                    avg_psnr += util.calculate_psnr(sr_img, gt_img)
                    pbar.update('Test {}'.format(img_name))

                avg_psnr = avg_psnr / idx

                # log
                logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
                # tensorboard logger
                if opt['use_tb_logger'] and 'debug' not in opt['name']:
                    tb_logger.add_scalar('psnr', avg_psnr, current_step)
            else:  # video restoration validation
                if opt['dist']:
                    # todo : multi-GPU testing
                    psnr_rlt = {}  # with border and center frames
                    psnr_rlt_avg = {}
                    psnr_total_avg = 0.

                    ssim_rlt = {}  # with border and center frames
                    ssim_rlt_avg = {}
                    ssim_total_avg = 0.

                    val_loss_rlt = {}
                    val_loss_rlt_avg = {}
                    val_loss_total_avg = 0.

                    if rank == 0:
                        pbar = util.ProgressBar(len(val_set))

                    for idx in range(rank, len(val_set), world_size):

                        print('idx', idx)

                        if 'debug' in opt['name']:
                            if (idx >= 3):
                                break

                        val_data = val_set[idx]
                        val_data['LQs'].unsqueeze_(0)
                        val_data['GT'].unsqueeze_(0)
                        folder = val_data['folder']
                        idx_d, max_idx = val_data['idx'].split('/')
                        idx_d, max_idx = int(idx_d), int(max_idx)

                        if psnr_rlt.get(folder, None) is None:
                            psnr_rlt[folder] = torch.zeros(max_idx,
                                                           dtype=torch.float32,
                                                           device='cuda')

                        if ssim_rlt.get(folder, None) is None:
                            ssim_rlt[folder] = torch.zeros(max_idx,
                                                           dtype=torch.float32,
                                                           device='cuda')

                        if val_loss_rlt.get(folder, None) is None:
                            val_loss_rlt[folder] = torch.zeros(
                                max_idx, dtype=torch.float32, device='cuda')

                        # tmp = torch.zeros(max_idx, dtype=torch.float32, device='cuda')
                        model.feed_data(val_data)
                        # model.test()
                        # model.test_stitch()

                        if opt['stitch'] == True:
                            model.test_stitch()
                        else:
                            model.test()  # large GPU memory

                        # visuals = model.get_current_visuals()
                        visuals = model.get_current_visuals(
                            save=True,
                            name='{}_{}'.format(folder, idx),
                            save_path=opt['path']['val_images'])

                        rlt_img = util.tensor2img(visuals['rlt'])  # uint8
                        gt_img = util.tensor2img(visuals['GT'])  # uint8

                        # calculate PSNR
                        psnr = util.calculate_psnr(rlt_img, gt_img)
                        psnr_rlt[folder][idx_d] = psnr

                        # calculate SSIM
                        ssim = util.calculate_ssim(rlt_img, gt_img)
                        ssim_rlt[folder][idx_d] = ssim

                        # calculate Val loss
                        val_loss = model.get_loss()
                        val_loss_rlt[folder][idx_d] = val_loss

                        logger.info(
                            '{}_{:02d} PSNR: {:.4f}, SSIM: {:.4f}'.format(
                                folder, idx, psnr, ssim))

                        if rank == 0:
                            for _ in range(world_size):
                                pbar.update('Test {} - {}/{}'.format(
                                    folder, idx_d, max_idx))

                    # # collect data
                    for _, v in psnr_rlt.items():
                        dist.reduce(v, 0)

                    for _, v in ssim_rlt.items():
                        dist.reduce(v, 0)

                    for _, v in val_loss_rlt.items():
                        dist.reduce(v, 0)

                    dist.barrier()

                    if rank == 0:
                        psnr_rlt_avg = {}
                        psnr_total_avg = 0.
                        for k, v in psnr_rlt.items():
                            psnr_rlt_avg[k] = torch.mean(v).cpu().item()
                            psnr_total_avg += psnr_rlt_avg[k]
                        psnr_total_avg /= len(psnr_rlt)
                        log_s = '# Validation # PSNR: {:.4e}:'.format(
                            psnr_total_avg)
                        for k, v in psnr_rlt_avg.items():
                            log_s += ' {}: {:.4e}'.format(k, v)
                        logger.info(log_s)

                        # ssim
                        ssim_rlt_avg = {}
                        ssim_total_avg = 0.
                        for k, v in ssim_rlt.items():
                            ssim_rlt_avg[k] = torch.mean(v).cpu().item()
                            ssim_total_avg += ssim_rlt_avg[k]
                        ssim_total_avg /= len(ssim_rlt)
                        log_s = '# Validation # PSNR: {:.4e}:'.format(
                            ssim_total_avg)
                        for k, v in ssim_rlt_avg.items():
                            log_s += ' {}: {:.4e}'.format(k, v)
                        logger.info(log_s)

                        # added
                        val_loss_rlt_avg = {}
                        val_loss_total_avg = 0.
                        for k, v in val_loss_rlt.items():
                            val_loss_rlt_avg[k] = torch.mean(v).cpu().item()
                            val_loss_total_avg += val_loss_rlt_avg[k]
                        val_loss_total_avg /= len(val_loss_rlt)
                        log_l = '# Validation # Loss: {:.4e}:'.format(
                            val_loss_total_avg)
                        for k, v in val_loss_rlt_avg.items():
                            log_l += ' {}: {:.4e}'.format(k, v)
                        logger.info(log_l)

                        message = ''
                        for v in model.get_current_learning_rate():
                            message += '{:.5e}'.format(v)

                        logger_val.info(
                            'Epoch {:02d}, LR {:s}, PSNR {:.4f}, SSIM {:.4f} Train {:s}, Val Total Loss {:.4e}'
                            .format(epoch, message, psnr_total_avg,
                                    ssim_total_avg, message_train_loss,
                                    val_loss_total_avg))

                        if opt['use_tb_logger'] and 'debug' not in opt['name']:
                            tb_logger.add_scalar('psnr_avg', psnr_total_avg,
                                                 current_step)
                            for k, v in psnr_rlt_avg.items():
                                tb_logger.add_scalar(k, v, current_step)
                            # add val loss
                            tb_logger.add_scalar('val_loss_avg',
                                                 val_loss_total_avg,
                                                 current_step)
                            for k, v in val_loss_rlt_avg.items():
                                tb_logger.add_scalar(k, v, current_step)

                else:  # Todo: our function One GPU
                    pbar = util.ProgressBar(len(val_loader))
                    psnr_rlt = {}  # with border and center frames
                    psnr_rlt_avg = {}
                    psnr_total_avg = 0.

                    ssim_rlt = {}  # with border and center frames
                    ssim_rlt_avg = {}
                    ssim_total_avg = 0.

                    val_loss_rlt = {}
                    val_loss_rlt_avg = {}
                    val_loss_total_avg = 0.

                    for val_inx, val_data in enumerate(val_loader):

                        if 'debug' in opt['name']:
                            if (val_inx >= 5):
                                break

                        folder = val_data['folder'][0]
                        # idx_d = val_data['idx'].item()
                        idx_d = val_data['idx']
                        # border = val_data['border'].item()
                        if psnr_rlt.get(folder, None) is None:
                            psnr_rlt[folder] = []

                        if ssim_rlt.get(folder, None) is None:
                            ssim_rlt[folder] = []

                        if val_loss_rlt.get(folder, None) is None:
                            val_loss_rlt[folder] = []

                        # process the black blank [B N C H W]

                        print(val_data['LQs'].size())

                        H_S = val_data['LQs'].size(3)  # 540
                        W_S = val_data['LQs'].size(4)  # 960

                        print(H_S)
                        print(W_S)

                        blank_1_S = 0
                        blank_2_S = 0

                        print(val_data['LQs'][0, 2, 0, :, :].size())

                        for i in range(H_S):
                            if not sum(val_data['LQs'][0, 2, 0, i, :]) == 0:
                                blank_1_S = i - 1
                                # assert not sum(data_S[:, :, 0][i+1]) == 0
                                break

                        for i in range(H_S):
                            if not sum(val_data['LQs'][0, 2, 0, :,
                                                       H_S - i - 1]) == 0:
                                blank_2_S = (H_S - 1) - i - 1
                                # assert not sum(data_S[:, :, 0][blank_2_S-1]) == 0
                                break
                        print('LQ :', blank_1_S, blank_2_S)

                        if blank_1_S == -1:
                            print('LQ has no blank')
                            blank_1_S = 0
                            blank_2_S = H_S

                        # val_data['LQs'] = val_data['LQs'][:,:,:,blank_1_S:blank_2_S,:]

                        print("LQ", val_data['LQs'].size())

                        # end of process the black blank

                        model.feed_data(val_data)

                        if opt['stitch'] == True:
                            model.test_stitch()
                        else:
                            model.test()  # large GPU memory

                        # process blank

                        blank_1_L = blank_1_S << 2
                        blank_2_L = blank_2_S << 2
                        print(blank_1_L, blank_2_L)

                        print(model.fake_H.size())

                        if not blank_1_S == 0:
                            # model.fake_H = model.fake_H[:,:,blank_1_L:blank_2_L,:]
                            model.fake_H[:, :, 0:blank_1_L, :] = 0
                            model.fake_H[:, :, blank_2_L:H_S, :] = 0

                        # end of # process blank

                        visuals = model.get_current_visuals(
                            save=True,
                            name='{}_{:02d}'.format(folder, val_inx),
                            save_path=opt['path']['val_images'])

                        rlt_img = util.tensor2img(visuals['rlt'])  # uint8
                        gt_img = util.tensor2img(visuals['GT'])  # uint8

                        # calculate PSNR
                        psnr = util.calculate_psnr(rlt_img, gt_img)
                        psnr_rlt[folder].append(psnr)

                        # calculate SSIM
                        ssim = util.calculate_ssim(rlt_img, gt_img)
                        ssim_rlt[folder].append(ssim)

                        # val loss
                        val_loss = model.get_loss()
                        val_loss_rlt[folder].append(val_loss.item())

                        logger.info(
                            '{}_{:02d} PSNR: {:.4f}, SSIM: {:.4f}'.format(
                                folder, val_inx, psnr, ssim))

                        pbar.update('Test {} - {}'.format(folder, idx_d))

                    # average PSNR
                    for k, v in psnr_rlt.items():
                        psnr_rlt_avg[k] = sum(v) / len(v)
                        psnr_total_avg += psnr_rlt_avg[k]
                    psnr_total_avg /= len(psnr_rlt)
                    log_s = '# Validation # PSNR: {:.4e}:'.format(
                        psnr_total_avg)
                    for k, v in psnr_rlt_avg.items():
                        log_s += ' {}: {:.4e}'.format(k, v)
                    logger.info(log_s)

                    # average SSIM
                    for k, v in ssim_rlt.items():
                        ssim_rlt_avg[k] = sum(v) / len(v)
                        ssim_total_avg += ssim_rlt_avg[k]
                    ssim_total_avg /= len(ssim_rlt)
                    log_s = '# Validation # SSIM: {:.4e}:'.format(
                        ssim_total_avg)
                    for k, v in ssim_rlt_avg.items():
                        log_s += ' {}: {:.4e}'.format(k, v)
                    logger.info(log_s)

                    # average VMAF

                    # average Val LOSS
                    for k, v in val_loss_rlt.items():
                        val_loss_rlt_avg[k] = sum(v) / len(v)
                        val_loss_total_avg += val_loss_rlt_avg[k]
                    val_loss_total_avg /= len(val_loss_rlt)
                    log_l = '# Validation # Loss: {:.4e}:'.format(
                        val_loss_total_avg)
                    for k, v in val_loss_rlt_avg.items():
                        log_l += ' {}: {:.4e}'.format(k, v)
                    logger.info(log_l)

                    # toal validation log

                    message = ''
                    for v in model.get_current_learning_rate():
                        message += '{:.5e}'.format(v)

                    logger_val.info(
                        'Epoch {:02d}, LR {:s}, PSNR {:.4f}, SSIM {:.4f} Train {:s}, Val Total Loss {:.4e}'
                        .format(epoch, message, psnr_total_avg, ssim_total_avg,
                                message_train_loss, val_loss_total_avg))

                    # end add

                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        tb_logger.add_scalar('psnr_avg', psnr_total_avg,
                                             current_step)
                        for k, v in psnr_rlt_avg.items():
                            tb_logger.add_scalar(k, v, current_step)
                        # tb_logger.add_scalar('ssim_avg', ssim_total_avg, current_step)
                        # for k, v in ssim_rlt_avg.items():
                        #     tb_logger.add_scalar(k, v, current_step)
                        # add val loss
                        tb_logger.add_scalar('val_loss_avg',
                                             val_loss_total_avg, current_step)
                        for k, v in val_loss_rlt_avg.items():
                            tb_logger.add_scalar(k, v, current_step)

            ############################################
            #
            #          end of validation, save model
            #
            ############################################
            #
            logger.info("Finished an epoch, Check and Save the model weights")
            # we check the validation loss instead of training loss. OK~
            if saved_total_loss >= val_loss_total_avg:
                saved_total_loss = val_loss_total_avg
                #torch.save(model.state_dict(), args.save_path + "/best" + ".pth")
                model.save('best')
                logger.info(
                    "Best Weights updated for decreased validation loss")

            else:
                logger.info(
                    "Weights Not updated for undecreased validation loss")

            if saved_total_PSNR <= psnr_total_avg:
                saved_total_PSNR = psnr_total_avg
                model.save('bestPSNR')
                logger.info(
                    "Best Weights updated for increased validation PSNR")

            else:
                logger.info(
                    "Weights Not updated for unincreased validation PSNR")

        ############################################
        #
        #          end of one epoch, schedule LR
        #
        ############################################

        # add scheduler  todo
        if opt['train']['lr_scheme'] == 'ReduceLROnPlateau':
            for scheduler in model.schedulers:
                # scheduler.step(val_loss_total_avg)
                scheduler.step(val_loss_total_avg)

    if rank <= 0:
        logger.info('Saving the final model.')
        model.save('last')
        logger.info('End of training.')
        tb_logger.close()
Exemple #10
0
def psnr_main(opt,
              train_loader,
              val_loader,
              train_sampler,
              logger,
              resume_state=None,
              tb_logger=None,
              rank=-1):
    # create model
    model = create_model(opt)

    # resume training
    if resume_state:
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))

        start_epoch = resume_state['epoch']
        current_step = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0

    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(
        start_epoch, current_step))
    total_epochs = int(opt['train']['nepochs'])
    best_psnr = 0
    patience = 0
    all_results = []
    for epoch in range(start_epoch, total_epochs):
        if opt['dist']:
            train_sampler.set_epoch(epoch)
        for batch_num, train_data in enumerate(train_loader):
            current_step += 1

            # training
            model.feed_data(train_data)
            model.optimize_parameters(current_step)

            progress_bar(batch_num, len(train_loader), msg=None)

        # log
        if epoch % opt['logger']['print_freq'] == 0:
            logs = model.get_current_log()
            message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
                epoch, current_step, model.get_current_learning_rate())
            for k, v in logs.items():
                message += '{:s}: {:.4e} '.format(k, v)
                # tensorboard logger
                if opt['use_tb_logger'] and 'debug' not in opt['name']:
                    if rank <= 0:
                        tb_logger.add_scalar(k, v, current_step)
            if rank <= 0:
                logger.info(message)

        # batched validation
        if epoch % opt['train']['val_freq'] == 0 and rank <= 0:
            avg_psnr = 0.0
            idx = 0
            for batch_num, val_data in enumerate(val_loader):
                img_name = os.path.splitext(
                    os.path.basename(val_data['LQ_path'][0]))[0]
                img_dir = os.path.join(opt['path']['val_images'], img_name)
                util.mkdir(img_dir)

                model.feed_data(val_data)
                model.test()

                # calculate PSNR
                item_psnr = util.tensor_psnr(model.real_H, model.fake_H)
                if math.isfinite(item_psnr):
                    avg_psnr += item_psnr
                    idx += 1

                progress_bar(batch_num, len(val_loader), msg=None)

            avg_psnr = avg_psnr / idx
            all_results.append(avg_psnr)

            if avg_psnr < best_psnr:
                patience += 1
                if patience == opt['train']['epoch_patience']:
                    model.update_learning_rate(opt['train']['lr_decay'])
                    print(
                        "no improvement, final patience, updating learning rate to {}"
                        .format(model.get_current_learning_rate()))
                    patience = 0
                else:
                    print("no improvement, patience {} out of {}".format(
                        patience, opt['train']['epoch_patience']))
                if model.get_current_learning_rate() < opt['train']['min_lr']:
                    break

            else:
                best_psnr = avg_psnr
                if rank <= 0:
                    logger.info('Saving models and training states.')
                    model.save('latest')

            # log
            logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
            logger_val = logging.getLogger('val')  # validation logger
            logger_val.info(
                '<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e} (best: {:.4e})'.
                format(epoch, current_step, avg_psnr, best_psnr))
            # tensorboard logger
            if opt['use_tb_logger'] and 'debug' not in opt['name']:
                tb_logger.add_scalar('psnr', avg_psnr, current_step)

    if rank <= 0:
        logger.info('End of training.')
        json.dump(all_results,
                  open(
                      os.path.join(opt['path']['log'],
                                   'validation_results.json'), 'w'),
                  indent=2)
Exemple #11
0
def main():
    #### options
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt',
                        type=str,
                        default='options/test/test_KPSAGAN.yml',
                        help='Path to option YMAL file.')
    parser.add_argument('--launcher',
                        choices=['none', 'pytorch'],
                        default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=False)

    #### distributed training settings
    if args.launcher == 'none':  # disabled distributed training
        opt['dist'] = False
        rank = -1
        print('Disabled distributed training.')
    else:
        opt['dist'] = True
        init_dist()
        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

    #### loading resume state if exists
    if opt['path'].get('resume_state', None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(
            opt['path']['resume_state'],
            map_location=lambda storage, loc: storage.cuda(device_id))
        option.check_resume(opt, resume_state['iter'])  # check resume options
    else:
        resume_state = None

    #### mkdir and loggers
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            # util.mkdir_and_rename(
            #opt['path']['experiments_root'])  # rename experiment folder if exists
            util.mkdirs(
                (path for key, path in opt['path'].items()
                 if not key == 'experiments_root'
                 and 'pretrain_model' not in key and 'resume' not in key))

        # config loggers. Before it, the log will not work
        util.setup_logger('base',
                          opt['path']['log'],
                          'train_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)
        util.setup_logger('val',
                          opt['path']['log'],
                          'val_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)
        logger = logging.getLogger('base')
        logger.info(option.dict2str(opt))
    else:
        util.setup_logger('base',
                          opt['path']['log'],
                          'train',
                          level=logging.INFO,
                          screen=True)
        logger = logging.getLogger('base')

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    torch.backends.cudnn.benckmark = True
    # torch.backends.cudnn.deterministic = True

    #### create train and val dataloader
    dataset_ratio = 200  # enlarge the size of each epoch
    for phase, dataset_opt in opt['datasets'].items():
        val_set = create_dataset(dataset_opt)
        val_loader = create_dataloader(val_set, dataset_opt, opt, None)
        if rank <= 0:
            logger.info('Number of val images in [{:s}]: {:d}'.format(
                dataset_opt['name'], len(val_set)))

    #### create model
    model = create_model(opt)

    avg_psnr = 0.0
    idx = 0
    dataset_dir = '/srv/wuyichao/Super-Resolution/KPSAGAN/BasicSR-master/BasicSR-master-c/result_600000/'
    util.mkdir(dataset_dir)
    for val_data in val_loader:
        idx += 1
        img_name = os.path.splitext(os.path.basename(
            val_data['LQ_path'][0]))[0]
        logger.info(img_name)
        #img_dir = os.path.join(opt['path']['val_images'], img_name)
        #util.mkdir(img_dir)

        model.feed_data(val_data)
        model.test()

        visuals = model.get_current_visuals()
        sr_img = util.tensor2img(visuals['SR'])  # uint8
        gt_img = util.tensor2img(visuals['GT'])  # uint8

        # save images
        suffix = 'cut'
        #opt['suffix']
        if suffix:
            save_img_path = osp.join(dataset_dir, img_name + suffix + '.png')
        else:
            save_img_path = osp.join(dataset_dir, img_name + '.png')
        util.save_img(sr_img, save_img_path)

        # calculate PSNR
        crop_size = opt['scale']
        gt_img = gt_img / 255.
        sr_img = sr_img / 255.
        cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
        cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
        avg_psnr += util.calculate_psnr(cropped_sr_img * 255,
                                        cropped_gt_img * 255)

    avg_psnr = avg_psnr / idx

    # log
    logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
    logger_val = logging.getLogger('val')  # validation logger
    logger_val.info('psnr: {:.4e}'.format(avg_psnr))
Exemple #12
0
 def final_weights_file(self):
     path = "weights/{}".format(self.cnf['name'])
     mkdir(path)
     return os.path.join(path, 'weights_final.pkl')
Exemple #13
0
 def retrain_weights_file(self):
     path = "weights/{}/retrain".format(self.cnf['name'])
     mkdir(path)
     return os.path.join(path, 'weights.pkl')
Exemple #14
0
def main():
    dataset = 'REDS'  # REDS | Vimeo90K | DIV2K800_sub
    opt = {}
    opt['dist'] = False
    opt['gpu_ids'] = [0]
    if dataset == 'REDS':
        opt['name'] = 'test_REDS'
        opt['dataroot_GT'] = '../../datasets/REDS/train_sharp_wval.lmdb'
        opt['dataroot_LQ'] = '../../datasets/REDS/train_sharp_bicubic_wval.lmdb'
        opt['mode'] = 'REDS'
        opt['N_frames'] = 5
        opt['phase'] = 'train'
        opt['use_shuffle'] = True
        opt['n_workers'] = 8
        opt['batch_size'] = 16
        opt['GT_size'] = 256
        opt['LQ_size'] = 64
        opt['scale'] = 4
        opt['use_flip'] = True
        opt['use_rot'] = True
        opt['interval_list'] = [1]
        opt['random_reverse'] = False
        opt['border_mode'] = False
        opt['cache_keys'] = None
        opt['data_type'] = 'lmdb'  # img | lmdb | mc
    elif dataset == 'Vimeo90K':
        opt['name'] = 'test_Vimeo90K'
        opt['dataroot_GT'] = '../../datasets/vimeo90k/vimeo90k_train_GT.lmdb'
        opt['dataroot_LQ'] = '../../datasets/vimeo90k/vimeo90k_train_LR7frames.lmdb'
        opt['mode'] = 'Vimeo90K'
        opt['N_frames'] = 7
        opt['phase'] = 'train'
        opt['use_shuffle'] = True
        opt['n_workers'] = 8
        opt['batch_size'] = 16
        opt['GT_size'] = 256
        opt['LQ_size'] = 64
        opt['scale'] = 4
        opt['use_flip'] = True
        opt['use_rot'] = True
        opt['interval_list'] = [1]
        opt['random_reverse'] = False
        opt['border_mode'] = False
        opt['cache_keys'] = None
        opt['data_type'] = 'lmdb'  # img | lmdb | mc
    elif dataset == 'DIV2K800_sub':
        opt['name'] = 'DIV2K800'
        opt['dataroot_GT'] = '../../datasets/DIV2K/DIV2K800_sub.lmdb'
        opt['dataroot_LQ'] = '../../datasets/DIV2K/DIV2K800_sub_bicLRx4.lmdb'
        opt['mode'] = 'LQGT'
        opt['phase'] = 'train'
        opt['use_shuffle'] = True
        opt['n_workers'] = 8
        opt['batch_size'] = 16
        opt['GT_size'] = 128
        opt['scale'] = 4
        opt['use_flip'] = True
        opt['use_rot'] = True
        opt['color'] = 'RGB'
        opt['data_type'] = 'lmdb'  # img | lmdb
    else:
        raise ValueError('Please implement by yourself.')

    util.mkdir('tmp')
    train_set = create_dataset(opt)
    train_loader = create_dataloader(train_set, opt, opt, None)
    nrow = int(math.sqrt(opt['batch_size']))
    padding = 2 if opt['phase'] == 'train' else 0

    print('start...')
    for i, data in enumerate(train_loader):
        if i > 5:
            break
        print(i)
        if dataset == 'REDS' or dataset == 'Vimeo90K':
            LQs = data['LQs']
        else:
            LQ = data['LQ']
        GT = data['GT']

        if dataset == 'REDS' or dataset == 'Vimeo90K':
            for j in range(LQs.size(1)):
                torchvision.utils.save_image(LQs[:, j, :, :, :],
                                             'tmp/LQ_{:03d}_{}.png'.format(i, j), nrow=nrow,
                                             padding=padding, normalize=False)
        else:
            torchvision.utils.save_image(LQ, 'tmp/LQ_{:03d}.png'.format(i), nrow=nrow,
                                         padding=padding, normalize=False)
        torchvision.utils.save_image(GT, 'tmp/GT_{:03d}.png'.format(i), nrow=nrow, padding=padding,
                                     normalize=False)
Exemple #15
0
 def train_dir(self):
   return ut.mkdir(pj(self.resdir, 'training'))
def main(config_path, trained_model_path):

    restore_epoch = None  # if None, restore the final epoch

    # Read a config file (.yml)
    with open(config_path, "r") as f:
        config = yaml.load(f)
        corpus = config['corpus']
        feature = config['feature']
        param = config['param']

    if corpus['label_type'] == 'phone':
        if corpus['social_signal_type'] in ['insert', 'insert3']:
            output_size = 41
        elif corpus['social_signal_type'] == 'insert2':
            output_size = 44
        elif corpus['social_signal_type'] == 'remove':
            output_size = 38
    elif corpus['label_type'] == 'character':
        if corpus['social_signal_type'] in ['insert', 'insert3']:
            output_size = 150
        elif corpus['social_signal_type'] == 'insert2':
            output_size = 153
        elif corpus['social_signal_type'] == 'remove':
            output_size = 147

    # Load model
    CTCModel = load(model_type=config['model_name'])
    network = CTCModel(batch_size=param['batch_size'],
                       input_size=feature['input_size'] * feature['num_stack'],
                       num_cell=param['num_cell'],
                       num_layer=param['num_layer'],
                       output_size=output_size,
                       clip_gradients=param['clip_grad'],
                       clip_activation=param['clip_activation'],
                       dropout_ratio_input=param['dropout_input'],
                       dropout_ratio_hidden=param['dropout_hidden'],
                       num_proj=param['num_proj'],
                       weight_decay=param['weight_decay'])

    network.model_name = config['model_name'].upper()
    network.model_name += '_' + str(param['num_cell'])
    network.model_name += '_' + str(param['num_layer'])
    network.model_name += '_' + param['optimizer']
    network.model_name += '_lr' + str(param['learning_rate'])
    if feature['num_stack'] != 1:
        network.model_name += '_stack' + str(feature['num_stack'])
    network.model_name += '_transfer_' + corpus['transfer_data_size']

    # Set save path
    network.model_dir = mkdir('/n/sd8/inaguma/result/csj/dialog/')
    network.model_dir = join(network.model_dir, 'ctc')
    network.model_dir = join(network.model_dir, corpus['label_type'])
    network.model_dir = join(network.model_dir, corpus['social_signal_type'])
    network.model_dir = join(network.model_dir, network.model_name)

    # Reset model directory
    if not os.path.isfile(os.path.join(network.model_dir, 'complete.txt')):
        tf.gfile.DeleteRecursively(network.model_dir)
        tf.gfile.MakeDirs(network.model_dir)
    else:
        raise ValueError('File exists.')

    # Set process name
    setproctitle('ctc_csj_dialog_' + corpus['label_type'] + '_' +
                 param['optimizer'] + '_' + corpus['social_signal_type'] +
                 '_transfer_' + corpus['transfer_data_size'])

    # Save config file
    shutil.copyfile(config_path, os.path.join(network.model_dir, 'config.yml'))

    sys.stdout = open(os.path.join(network.model_dir, 'train.log'), 'w')
    print(network.model_name)
    do_fine_tune(network=network,
                 optimizer=param['optimizer'],
                 learning_rate=param['learning_rate'],
                 batch_size=param['batch_size'],
                 epoch_num=param['num_epoch'],
                 label_type=corpus['label_type'],
                 num_stack=feature['num_stack'],
                 num_skip=feature['num_skip'],
                 social_signal_type=corpus['social_signal_type'],
                 trained_model_path=trained_model_path,
                 restore_epoch=restore_epoch)
    sys.stdout = sys.__stdout__
Exemple #17
0
from datetime import datetime
import pprint
import os
import argparse
import numpy as np
import torchvision.models as models
from utils.util import mkdir
from data import FEATURE_DIR

mkdir(FEATURE_DIR)


class Config(object):
    def __init__(self, layers, cnf=None):
        self.layers = layersGlobalPoolLayer
        self.cnf = cnf
        pprint.pprint(cnf)

    def get(self, k, default=None):
        return self.cnf.get(k, default)

    @property
    def weights_epoch(self):
        path = "weights/{}/epochs".format(self.cnf['name'])
        mkdir(path)
        return os.path.join(path, '{epoch}_{timestamp}_{loss}.pkl')

    @property
    def weights_best(self):
        path = "weights/{}/best".format(self.cnf['name'])
        mkdir(path)