Exemple #1
0
def validate(val_loader, model, epoch, args):
    global writer
    batch_time = SumEpochMeter('Time', ':6.3f')
    losses = AverageEpochMeter('Loss', ':.4e')
    top1 = AverageEpochMeter('Top-1 Classification Acc')
    top5 = AverageEpochMeter('Top-5 Classification Acc')
    progress = ProgressEpochMeter(len(val_loader),
                                  [batch_time, losses, top1, top5],
                                  prefix="\nValidation Phase: ")

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        end = time.time()
        for i, (images, target, _) in enumerate(val_loader):
            if args.gpu is not None:
                images = images.cuda(args.gpu, non_blocking=True)
            target = target.cuda(args.gpu, non_blocking=True)

            # compute output
            output = model(images, target)
            # loss = criterion(output, target)
            if args.mode == 'base':
                loss = model.module.get_loss(target)
            elif args.mode == 'ACoL':
                loss_raw, loss_erase = model.module.get_loss(target)
                loss = loss_raw + loss_erase
            else:
                loss = model.module.get_loss(target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))
            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

        if args.gpu == 0:
            progress.display(epoch + 1)

    return top1.avg, top5.avg, losses.avg
Exemple #2
0
def evaluate_loc(val_loader, model, epoch, log_folder, args):
    batch_time = SumEpochMeter('Time')
    losses = AverageEpochMeter('Loss')
    top1 = AverageEpochMeter('Top-1 Classification Acc')
    top5 = AverageEpochMeter('Top-5 Classification Acc')
    GT_loc = AverageEpochMeter('Top-1 GT-Known Localization Acc')
    top1_loc = AverageEpochMeter('Top-1 Localization Acc')
    progress = ProgressEpochMeter(
        len(val_loader), [batch_time, losses, GT_loc, top1_loc, top1, top5],
        prefix="\nValidation Phase: ")

    # image requeired for individual storage
    image_names = get_image_name(args.test_list)
    gt_bbox = load_bbox_size(dataset_path=args.data_list,
                             resize_size=args.resize_size,
                             crop_size=args.crop_size)

    cnt = 0
    cnt_false = 0
    hit_known = 0
    hit_top1 = 0

    means = [0.485, .456, .406]
    stds = [.229, .224, .225]
    means = torch.reshape(torch.tensor(means), (1, 3, 1, 1))
    stds = torch.reshape(torch.tensor(stds), (1, 3, 1, 1))

    model.module.eval()
    with torch.no_grad():
        end = time.time()
        if args.gpu == 0:
            for i, (images, target, image_ids) in tqdm(enumerate(val_loader)):
                # imagenet is actually not used here
                if args.gpu is not None:
                    images = images.cuda(args.gpu, non_blocking=True)

                target = target.cuda(args.gpu, non_blocking=True)
                image_ids = image_ids.data.cpu().numpy()
                output = model.module(images, target)
                # loss = criterion(output, target)

                loss = model.module.get_loss(target)

                # Get acc1, acc5 and update
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                _, pred = output.topk(1, 1, True, True)
                pred = pred.t()
                correct = pred.eq(target.view(1, -1).expand_as(pred))

                wrongs = [c == 0 for c in correct.cpu().numpy()][0]

                # original image in tensor format
                if args.cam_curve == False and args.evaluate == True:
                    evaluate_image_ = images.clone().detach().cpu()
                    tensor_image = images.clone().detach().cpu() * stds + means

                image_ = images.clone().detach().cpu() * stds + means
                b = image_.shape[0]

                # cam image in tensor format
                cam = get_cam(model=model, target=target, args=args)
                # generate bbox
                blend_tensor = torch.zeros_like(image_)
                wrong_blend_tensor = torch.zeros_like(image_)
                # channel first to channel last, 3*W*H->W*H*3 and normaliza the image to 0-1

                image_ = image_.clone().detach().cpu().numpy().transpose(
                    0, 2, 3, 1)
                # print("cam shape",cam.shape)

                cam_ = cam.clone().detach().cpu().numpy().transpose(0, 2, 3, 1)

                # reverse the color representation(RGB -> BGR) and Opencv format
                image_ = image_[:, :, :, ::-1] * 255
                # cam_ = cam_[:, :, :, ::-1]
                for j in range(images.size(0)):

                    # TODO: paint some image here
                    # 1 save original image
                    # 2 save total feature map
                    # 3 save erased feature map
                    # 4 save blend feature map

                    # blend bbox: box and original image
                    estimated_bbox, blend_bbox = generate_bbox(
                        image_[j], cam_[j], gt_bbox[image_ids[j]],
                        args.cam_thr, args)

                    # reverse the color representation(RGB -> BGR) and reshape
                    if args.gpu == 0:
                        blend_bbox = blend_bbox[:, :, ::-1] / 255.
                        blend_bbox = blend_bbox.transpose(2, 0, 1)
                        blend_tensor[j] = torch.tensor(blend_bbox)

                    # calculate IOU for WSOL
                    IOU = calculate_IOU(gt_bbox[image_ids[j]], estimated_bbox)
                    if IOU >= 0.5:
                        hit_known += 1
                        if not wrongs[j]:
                            hit_top1 += 1
                    else:
                        if args.evaluate and wrongs[j]:
                            wrong_blend_tensor[j] = torch.tensor(blend_bbox)

                    if wrongs[j]:
                        cnt_false += 1

                    cnt += 1

                # that's say, only if you run the code in evaluate mode will give a visualization of images.
                if args.gpu == 0 and i < 1 and not args.cam_curve and not args.evaluate:
                    save_images(log_folder, 'results', epoch, i, blend_tensor,
                                args)

                loc_gt = hit_known / cnt * 100
                loc_top1 = hit_top1 / cnt * 100

                GT_loc.update(loc_gt, images.size(0))
                top1_loc.update(loc_top1, images.size(0))

                batch_time.update(time.time() - end)
                end = time.time()

            if args.gpu == 0:
                progress.display(epoch + 1)

    torch.cuda.empty_cache()

    # dist.barrier()
    cuda_tensor = torch.cuda.FloatTensor(
        [top1.avg, top5.avg, losses.avg, GT_loc.avg, top1_loc.avg])

    # sync validation result to all processes
    if args.task != 'wsol_eval':
        dist.broadcast(cuda_tensor, src=0)

    # return top1.avg, top5.avg, losses.avg, GT_loc.avg, top1_loc.avg
    return tuple(cuda_tensor.tolist())
Exemple #3
0
def train(train_loader, model, criterion, optimizer, epoch, args):
    batch_time = SumEpochMeter('Time', ':6.3f')
    data_time = SumEpochMeter('Data', ':6.3f')
    losses = AverageEpochMeter('Loss', ':.4e')
    top1 = AverageEpochMeter('Top-1 Classification Acc')
    top5 = AverageEpochMeter('Top-5 Classification Acc')
    learning_rate = AverageEpochMeter('Learning Rate:', ':.1e')
    progress = ProgressEpochMeter(
        len(train_loader),
        [batch_time, data_time, losses, learning_rate, top1, top5],
        prefix="\nTraining Phase: ")

    for param_group in optimizer.param_groups:
        learning_rate.update(param_group['lr'])
        break

    # switch to train mode
    model.train()
    end = time.time()

    means = [.485, .456, .406]
    stds = [.229, .224, .225]
    means = torch.reshape(torch.tensor(means), (1, 3, 1, 1)).cuda(args.gpu)
    stds = torch.reshape(torch.tensor(stds), (1, 3, 1, 1)).cuda(args.gpu)

    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if args.gpu is not None:
            images = images.cuda(args.gpu, non_blocking=True)
        target = target.cuda(args.gpu, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        adl_maps = list()

        with torch.no_grad():
            if 'ADL' in args.arch:
                if i < 5:
                    image_ = images.clone().detach() * stds + means
                    for name, module in model.module.named_modules():
                        if 'resnet' in args.arch:
                            if isinstance(module, resnet.ADL):
                                adl_maps.append(module.get_maps())
                        elif 'vgg' in args.arch:
                            if isinstance(module, vgg.ADL):
                                adl_maps.append(module.get_maps())
                    b, _, h, w = image_.shape
                    image_ = F.interpolate(image_, (h // 2, w // 2))
                    image_set = vutils.make_grid(image_[:16], nrow=16)
                    for idx, (attention, drop_mask) in enumerate(adl_maps):
                        attention = F.interpolate(attention, (h // 2, w // 2),
                                                  mode='bilinear',
                                                  align_corners=False)
                        drop_mask = F.interpolate(drop_mask, (h // 2, w // 2),
                                                  mode='bilinear',
                                                  align_corners=False)
                        attention = vutils.make_grid(attention[:16],
                                                     nrow=16,
                                                     normalize=True,
                                                     scale_each=True)
                        drop_mask = vutils.make_grid(drop_mask[:16],
                                                     nrow=16,
                                                     normalize=True,
                                                     scale_each=True)

                        if idx == 0:
                            compare_set = torch.cat(
                                (image_set, attention, drop_mask), dim=1)
                        else:
                            compare_set = torch.cat(
                                (compare_set, attention, drop_mask), dim=1)
                    if args.gpu == 0:
                        writer.add_image(args.name + '/ADL_' + str(args.gpu),
                                         compare_set, epoch * 5 + i)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

    return top1.avg, losses.avg, progress
Exemple #4
0
def evaluate_loc(val_loader, model, criterion, epoch, args):
    batch_time = SumEpochMeter('Time')
    losses = AverageEpochMeter('Loss')
    top1 = AverageEpochMeter('Top-1 Classification Acc')
    top5 = AverageEpochMeter('Top-5 Classification Acc')
    GT_loc = AverageEpochMeter('Top-1 GT-Known Localization Acc')
    top1_loc = AverageEpochMeter('Top-1 Localization Acc')
    progress = ProgressEpochMeter(
        len(val_loader), [batch_time, losses, GT_loc, top1_loc, top1, top5],
        prefix="\nValidation Phase: ")

    # image 개별 저장할 때 필요
    image_names = get_image_name(args.test_list)
    gt_bbox = load_bbox_size(dataset_path=args.data_list,
                             resize_size=args.resize_size,
                             crop_size=args.crop_size)

    cnt = 0
    cnt_false = 0
    hit_known = 0
    hit_top1 = 0

    means = [0.485, .456, .406]
    stds = [.229, .224, .225]
    means = torch.reshape(torch.tensor(means), (1, 3, 1, 1))
    stds = torch.reshape(torch.tensor(stds), (1, 3, 1, 1))

    model.eval()
    with torch.no_grad():
        end = time.time()
        for i, (images, target, image_ids) in enumerate(val_loader):
            if args.gpu is not None:
                images = images.cuda(args.gpu, non_blocking=True)

            target = target.cuda(args.gpu, non_blocking=True)
            image_ids = image_ids.data.cpu().numpy()
            output = model(images)
            loss = criterion(output, target)

            # Get acc1, acc5 and update
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            _, pred = output.topk(1, 1, True, True)
            pred = pred.t()
            correct = pred.eq(target.view(1, -1).expand_as(pred))
            wrongs = [c == 0 for c in correct.cpu().numpy()][0]

            # original image in tensor format
            image_ = images.clone().detach().cpu() * stds + means

            # cam image in tensor format
            cam = get_cam(model=model, target=target, args=args)

            # generate tensor base blend image
            # blend_tensor = generate_blend_tensor(image_, cam)

            # generate bbox
            blend_tensor = torch.zeros_like(image_)
            image_ = image_.clone().detach().cpu().numpy().transpose(
                0, 2, 3, 1)
            cam_ = cam.clone().detach().cpu().numpy().transpose(0, 2, 3, 1)

            # reverse the color representation(RGB -> BGR) and Opencv format
            image_ = image_[:, :, :, ::-1] * 255
            # cam_ = cam_[:, :, :, ::-1]
            for j in range(images.size(0)):

                estimated_bbox, blend_bbox = generate_bbox(
                    image_[j], cam_[j], gt_bbox[image_ids[j]], args.cam_thr)

                # reverse the color representation(RGB -> BGR) and reshape
                if args.gpu == 0:
                    blend_bbox = blend_bbox[:, :, ::-1] / 255.
                    blend_bbox = blend_bbox.transpose(2, 0, 1)
                    blend_tensor[j] = torch.tensor(blend_bbox)

                # calculate IOU for WSOL
                IOU = calculate_IOU(gt_bbox[image_ids[j]], estimated_bbox)
                if IOU >= 0.5:
                    hit_known += 1
                    if not wrongs[j]:
                        hit_top1 += 1
                if wrongs[j]:
                    cnt_false += 1

                cnt += 1

            # save the tensor
            if args.gpu == 0 and i < 1 and not args.cam_curve:
                save_images('results', epoch, i, blend_tensor, args)

            if args.gpu == 0 and args.evaluate and not args.cam_curve:
                save_images('results_best', epoch, i, blend_tensor, args)

            loc_gt = hit_known / cnt * 100
            loc_top1 = hit_top1 / cnt * 100

            GT_loc.update(loc_gt, images.size(0))
            top1_loc.update(loc_top1, images.size(0))

            batch_time.update(time.time() - end)
            end = time.time()

        if args.gpu == 0:
            progress.display(epoch + 1)

    torch.cuda.empty_cache()

    return top1.avg, top5.avg, losses.avg, GT_loc.avg, top1_loc.avg