Exemple #1
0
import data
import loss
import torch
import model
from trainer import Trainer

from option import args
import utils.utility as utility

ckpt = utility.checkpoint(args)

loader = data.Data(args)
model = model.Model(args, ckpt)
loss = loss.Loss(args, ckpt) if not args.test_only else None
trainer = Trainer(args, model, loss, loader, ckpt)

n = 200
while not trainer.terminate():
    n += 1
    trainer.train()
    if args.test_every != 0 and n % args.test_every == 0:
        trainer.test()
Exemple #2
0
import data
import loss
import torch
import model
from trainer import Trainer

from option import args
import utils.utility as utility

ckpt = utility.checkpoint(args)  #一个class,load,save,写日志

loader = data.Data(args)
model = model.Model(args, ckpt)
loss = loss.Loss(args, ckpt) if not args.test_only else None
trainer = Trainer(args, model, loss, loader, ckpt)

n = 0
while not trainer.terminate():
    n += 1
    trainer.train()
    # if args.test_every!=0 and n%args.test_every==0:
    # 	trainer.test()
    if n % 10 == 0:  #每10个epoach保存下模型
        model.save("result/", n)
Exemple #3
0
def main():
    # parser = argparse.ArgumentParser()
    # parser.add_argument('--root', type=str)
    # parser.add_argument('-d', '--dataset', type=str, default='market1501')
    # parser.add_argument('-m', '--model', type=str, default='osnet_x1_0')
    # parser.add_argument('--weights', type=str)
    # parser.add_argument('--save-dir', type=str, default='log')
    # parser.add_argument('--height', type=int, default=256)
    # parser.add_argument('--width', type=int, default=128)
    # args = parser.parse_args()

    if args.config != '':
        with open(args.config, 'r') as f:
            config = yaml.load(f)
        for op in config:
            setattr(args, op, config[op])

    # loader = data.Data(args)
    ckpt = utility.checkpoint(args)
    loader = data_v2.ImageDataManager(args)
    model = Model(args, ckpt)
    optimzer = optim.make_optimizer(args, model)
    # loss = loss.make_loss(args, ckpt) if not args.test_only else None

    start = -1
    if args.load != '':
        start = ckpt.resume_from_checkpoint(
            osp.join(ckpt.dir, 'model-latest.pth'), model, optimzer) - 1
    if args.pre_train != '':
        ckpt.load_pretrained_weights(model, args.pre_train)

    scheduler = optim.make_scheduler(args, optimzer, start)

    # print('[INFO] System infomation: \n {}'.format(get_pretty_env_info()))
    ckpt.write_log('[INFO] Model parameters: {com[0]} flops: {com[1]}'.format(
        com=compute_model_complexity(model, (1, 3, args.height, args.width))))

    use_gpu = torch.cuda.is_available()

    # datamanager = torchreid.data.ImageDataManager(
    #     root=args.root,
    #     sources=args.dataset,
    #     height=args.height,
    #     width=args.width,
    #     batch_size_train=100,
    #     batch_size_test=100,
    #     transforms=None,
    #     train_sampler='SequentialSampler'
    # )
    # test_loader = loader.testloader
    test_loader = loader.test_loader
    query_loader = loader.query_loader
    query_dataset = loader.queryset.query
    gallery_dataset = loader.galleryset.gallery
    # model = torchreid.models.build_model(
    #     name=args.model,
    #     num_classes=datamanager.num_train_pids,
    #     use_gpu=use_gpu
    # )

    if use_gpu:
        model = model.cuda()

    device = torch.device('cuda' if use_gpu else 'cpu')

    model.eval()

    # self.ckpt.add_log(torch.zeros(1, 6))
    # qf = self.extract_feature(self.query_loader,self.args).numpy()
    # gf = self.extract_feature(self.test_loader,self.args).numpy()
    with torch.no_grad():

        qf, query_ids, query_cams = extract_feature(
            model, device, query_loader, args)
        gf, gallery_ids, gallery_cams = extract_feature(
            model, device, test_loader, args)

    if args.re_rank:
        q_g_dist = np.dot(qf, np.transpose(gf))
        q_q_dist = np.dot(qf, np.transpose(qf))
        g_g_dist = np.dot(gf, np.transpose(gf))
        dist = re_ranking(q_g_dist, q_q_dist, g_g_dist)
    else:
        # dist = cdist(qf, gf,metric='cosine')

        # cosine distance
        dist =1- torch.mm(qf, gf.t()).cpu().numpy()

    # if args.weights and check_isfile(args.weights):
    #     load_pretrained_weights(model, args.weights)
    save_dir = ckpt.dir

    visualize_ranked_results(
        dist,
        query_dataset,
        gallery_dataset,
        loader.data_type,
        width=loader.width,
        height=loader.height,
        save_dir=osp.join(save_dir, 'visrank'),
        # topk=visrank_topk)
    )
Exemple #4
0
import data
import loss
import torch
import model
from trainer import Trainer

from option import args
import utils.utility as utility
import os

# os.environ['CUDA_VISIBLE_DEVICES']='0'  # 指定GPU
# print(args)  # after run option.py can get these 参数

ckpt = utility.checkpoint(args)  # args,log,dir,log_file...functions...


# print(ckpt)
# 以下3步可单独测试
loader = data.Data(args)
model = model.Model(args, ckpt)
loss = loss.Loss(args, ckpt) if not args.test_only else None  # if没有冒号

# print(1) if not True else None  # if没有冒号  output:
# print(2) if not False else None  # if没有冒号 output: 2

trainer = Trainer(args, model, loss, loader, ckpt)

n = 0
while not trainer.terminate():
    n += 1
    trainer.train()
Exemple #5
0
def main():
    # parser = argparse.ArgumentParser()
    # parser.add_argument('--root', type=str)
    # parser.add_argument('-d', '--dataset', type=str, default='market1501')
    # parser.add_argument('-m', '--model', type=str, default='osnet_x1_0')
    # parser.add_argument('--weights', type=str)
    # parser.add_argument('--save-dir', type=str, default='log')
    # parser.add_argument('--height', type=int, default=256)
    # parser.add_argument('--width', type=int, default=128)
    # args = parser.parse_args()

    if args.config != '':
        with open(args.config, 'r') as f:
            config = yaml.load(f)
        for op in config:
            setattr(args, op, config[op])

    # loader = data.Data(args)
    ckpt = utility.checkpoint(args)
    loader = data_v2.ImageDataManager(args)
    model = Model(args, ckpt)
    optimzer = optim.make_optimizer(args, model)
    # loss = loss.make_loss(args, ckpt) if not args.test_only else None

    start = -1
    if args.load != '':
        start = ckpt.resume_from_checkpoint(
            osp.join(ckpt.dir, 'model-latest.pth'), model, optimzer) - 1
    if args.pre_train != '':
        ckpt.load_pretrained_weights(model, args.pre_train)

    scheduler = optim.make_scheduler(args, optimzer, start)

    # print('[INFO] System infomation: \n {}'.format(get_pretty_env_info()))
    ckpt.write_log('[INFO] Model parameters: {com[0]} flops: {com[1]}'.format(
        com=compute_model_complexity(model, (1, 3, args.height, args.width))))

    use_gpu = torch.cuda.is_available()

    # datamanager = torchreid.data.ImageDataManager(
    #     root=args.root,
    #     sources=args.dataset,
    #     height=args.height,
    #     width=args.width,
    #     batch_size_train=100,
    #     batch_size_test=100,
    #     transforms=None,
    #     train_sampler='SequentialSampler'
    # )
    test_loader = loader.testloader

    # model = torchreid.models.build_model(
    #     name=args.model,
    #     num_classes=datamanager.num_train_pids,
    #     use_gpu=use_gpu
    # )

    if use_gpu:
        model = model.cuda()

    # if args.weights and check_isfile(args.weights):
    #     load_pretrained_weights(model, args.weights)

    save_dir = ckpt.dir

    visactmap(model, test_loader, save_dir, args.width, args.height, use_gpu)