def decode(self, loc_preds, cls_preds, input_size):
        '''Decode outputs back to bouding box locations and class labels.

        Args:
          loc_preds: (tensor) predicted locations, sized [#anchors, 4].
          cls_preds: (tensor) predicted class labels, sized [#anchors, #classes].
          input_size: (int/tuple) model input size of (w,h).

        Returns:
          boxes: (tensor) decode box locations, sized [#obj,4].
          labels: (tensor) class labels for each box, sized [#obj,].
        '''
        CLS_THRESH = 0.5
        NMS_THRESH = 0.5

        input_size = torch.Tensor([input_size,input_size]) if isinstance(input_size, int) \
                     else torch.Tensor(input_size)
        anchor_boxes = self._get_anchor_boxes(input_size)

        loc_xy = loc_preds[:,:2]
        loc_wh = loc_preds[:,2:]
    
        xy = loc_xy * anchor_boxes[:,2:] + anchor_boxes[:,:2]
        wh = loc_wh.exp() * anchor_boxes[:,2:]
        boxes = torch.cat([xy-wh/2, xy+wh/2], 1)  # [#anchors,4]

        score, labels = cls_preds.sigmoid().max(1)          # [#anchors,]
        ids = score > CLS_THRESH
        ids = ids.nonzero().squeeze()             # [#obj,]
        if not ids.size() :
            return torch.tensor([0, 0, 0, 0]), torch.tensor([0]), torch.tensor([0]), False
        if ids.size()[0] == 0 : 
            return torch.tensor([0, 0, 0, 0]), torch.tensor([0]), torch.tensor([0]), False
        keep, sco = box_nms(boxes[ids], score[ids], threshold=NMS_THRESH)
        return boxes[ids][keep], labels[ids][keep], sco, True
 def heatmap_to_nms(self, heatmap, tensor=False, boxnms=False):
     """
     return: 
       heatmap_nms_batch: np [batch, 1, H, W]
     """
     to_floatTensor = lambda x: torch.from_numpy(x).type(torch.FloatTensor)
     from utils.var_dim import toNumpy
     heatmap_np = toNumpy(heatmap)
     ## heatmap_nms
     if boxnms:
         from utils.utils import box_nms
         heatmap_nms_batch = [box_nms(h.detach().squeeze(), self.nms_dist, min_prob=self.conf_thresh) \
                         for h in heatmap] # [batch, H, W]
         heatmap_nms_batch = torch.stack(heatmap_nms_batch,
                                         dim=0).unsqueeze(1)
         # print('heatmap_nms_batch: ', heatmap_nms_batch.shape)
     else:
         heatmap_nms_batch = [self.heatmap_nms(h, self.nms_dist, self.conf_thresh) \
                         for h in heatmap_np] # [batch, H, W]
         heatmap_nms_batch = np.stack(heatmap_nms_batch, axis=0)
         heatmap_nms_batch = heatmap_nms_batch[:, np.newaxis, ...]
         if tensor:
             heatmap_nms_batch = to_floatTensor(heatmap_nms_batch)
             heatmap_nms_batch = heatmap_nms_batch.to(self.device)
     self.heatmap = heatmap
     self.heatmap_nms_batch = heatmap_nms_batch
     return heatmap_nms_batch
     pass
Exemple #3
0
    def add2tensorboard_nms(self,
                            img,
                            labels_2D,
                            semi,
                            task="training",
                            batch_size=1):
        """
        # deprecated:
        :param img:
        :param labels_2D:
        :param semi:
        :param task:
        :param batch_size:
        :return:
        """
        from utils.utils import getPtsFromHeatmap
        from utils.utils import box_nms

        boxNms = False
        n_iter = self.n_iter

        nms_dist = self.config["model"]["nms"]
        conf_thresh = self.config["model"]["detection_threshold"]
        # print("nms_dist: ", nms_dist)
        precision_recall_list = []
        precision_recall_boxnms_list = []
        for idx in range(batch_size):
            semi_flat_tensor = flattenDetection(semi[idx, :, :, :]).detach()
            semi_flat = toNumpy(semi_flat_tensor)
            semi_thd = np.squeeze(semi_flat, 0)
            pts_nms = getPtsFromHeatmap(semi_thd, conf_thresh, nms_dist)
            semi_thd_nms_sample = np.zeros_like(semi_thd)
            semi_thd_nms_sample[pts_nms[1, :].astype(np.int),
                                pts_nms[0, :].astype(np.int)] = 1

            label_sample = torch.squeeze(labels_2D[idx, :, :, :])
            # pts_nms = getPtsFromHeatmap(label_sample.numpy(), conf_thresh, nms_dist)
            # label_sample_rms_sample = np.zeros_like(label_sample.numpy())
            # label_sample_rms_sample[pts_nms[1, :].astype(np.int), pts_nms[0, :].astype(np.int)] = 1
            label_sample_nms_sample = label_sample

            if idx < 5:
                result_overlap = img_overlap(
                    np.expand_dims(label_sample_nms_sample, 0),
                    np.expand_dims(semi_thd_nms_sample, 0),
                    toNumpy(img[idx, :, :, :]),
                )
                self.writer.add_image(
                    task + "-detector_output_thd_overlay-NMS" + "/%d" % idx,
                    result_overlap,
                    n_iter,
                )
            assert semi_thd_nms_sample.shape == label_sample_nms_sample.size()
            precision_recall = precisionRecall_torch(
                torch.from_numpy(semi_thd_nms_sample), label_sample_nms_sample)
            precision_recall_list.append(precision_recall)

            if boxNms:
                semi_flat_tensor_nms = box_nms(semi_flat_tensor.squeeze(),
                                               nms_dist,
                                               min_prob=conf_thresh).cpu()
                semi_flat_tensor_nms = (semi_flat_tensor_nms >=
                                        conf_thresh).float()

                if idx < 5:
                    result_overlap = img_overlap(
                        np.expand_dims(label_sample_nms_sample, 0),
                        semi_flat_tensor_nms.numpy()[np.newaxis, :, :],
                        toNumpy(img[idx, :, :, :]),
                    )
                    self.writer.add_image(
                        task + "-detector_output_thd_overlay-boxNMS" +
                        "/%d" % idx,
                        result_overlap,
                        n_iter,
                    )
                precision_recall_boxnms = precisionRecall_torch(
                    semi_flat_tensor_nms, label_sample_nms_sample)
                precision_recall_boxnms_list.append(precision_recall_boxnms)

        precision = np.mean([
            precision_recall["precision"]
            for precision_recall in precision_recall_list
        ])
        recall = np.mean([
            precision_recall["recall"]
            for precision_recall in precision_recall_list
        ])
        self.writer.add_scalar(task + "-precision_nms", precision, n_iter)
        self.writer.add_scalar(task + "-recall_nms", recall, n_iter)
        print("-- [%s-%d-fast NMS] precision: %.4f, recall: %.4f" %
              (task, n_iter, precision, recall))
        if boxNms:
            precision = np.mean([
                precision_recall["precision"]
                for precision_recall in precision_recall_boxnms_list
            ])
            recall = np.mean([
                precision_recall["recall"]
                for precision_recall in precision_recall_boxnms_list
            ])
            self.writer.add_scalar(task + "-precision_boxnms", precision,
                                   n_iter)
            self.writer.add_scalar(task + "-recall_boxnms", recall, n_iter)
            print("-- [%s-%d-boxNMS] precision: %.4f, recall: %.4f" %
                  (task, n_iter, precision, recall))