def __init__(self, image_dirs, is_gray=False, crop_size=64, random_scale=True, rotate=True, fliplr=True, fliptb=True, preload=True): super(SingleImageLoader, self).__init__() self.image_filenames = [] self.preload = preload all_files = os.walk(image_dirs) for path, dir_list, file_list in all_files: self.image_filenames.extend( join(path, x) for x in file_list if is_image_file(x)) if self.preload: self.image_list = [] for file in self.image_filenames: img = Image.open(file).convert('RGB') self.image_list.append(img) self.is_gray = is_gray self.crop_size = crop_size self.rotate = rotate self.fliplr = fliplr self.fliptb = fliptb self.random_scale = random_scale
def prepare_data(self, train_path, is_ref_syn): blended = [] transmission = [] reflection = [] if is_ref_syn: print('loading synthetic data...') else: print('loading real data...') for dirname in train_path: train_t_gt = dirname + "/transmission_layer/" train_r_gt = dirname + "/reflection_layer/" train_b = dirname + "/blended/" if is_ref_syn: r_list = os.listdir(train_r_gt) for _, _, fnames in sorted(os.walk(train_t_gt)): for fname in fnames: if is_ref_syn: if not fname in r_list: continue if is_image_file(fname): path_transmission = os.path.join(train_t_gt, fname) transmission_img = cv2.imread(path_transmission) path_blended = os.path.join(train_b, fname) blended_img = cv2.imread(path_blended) path_reflection = os.path.join(train_r_gt, fname) reflection_img = cv2.imread(path_reflection) blended.append(blended_img) transmission.append(transmission_img) reflection.append(reflection_img) return blended, transmission, reflection
def __init__(self, dataPath='', loadSize=72, fineSize=64, flip=1): super(DATASET, self).__init__() # list all images into a list self.list = [x for x in listdir(dataPath) if is_image_file(x)] self.dataPath = dataPath self.loadSize = loadSize self.fineSize = fineSize self.flip = flip
def __init__(self, image_dir, is_gray=False, scale_factor=[2, 3, 4]): super(BenchmarkLoader, self).__init__() self.image_filenames = [] all_files = os.walk(image_dir) for path, dir_list, file_list in all_files: self.image_filenames.extend( join(path, x) for x in file_list if is_image_file(x)) # self.image_filenames = [join(image_dir, x) for x in sorted(listdir(image_dir)) if is_image_file(x)] self.is_gray = is_gray self.scale_factor = scale_factor
def __init__(self, dataPath='facades/train', loadSize=286, fineSize=256, flip=1): super(Facades, self).__init__() # list all images into a list self.image_list = [x for x in listdir(dataPath) if is_image_file(x)] self.dataPath = dataPath self.loadSize = loadSize self.fineSize = fineSize self.flip = flip
def get_test_data(self): data_path = self.config['data_path'] + self.config['test_path'] files_list = [ join(data_path, x) for x in sorted(listdir(data_path)) if is_image_file(x) ] img_list = [] # TODO: use scipy.misc when tuning, finally use imresize for matlab-like bicubic performance for file in files_list: img = io.imread(file) if img.shape[2] == 4: img = color.rgba2rgb(img) img_ycbcr = color.rgb2ycbcr(img) / 255 img_ycbcr = img_ycbcr.astype('float32') (rows, cols, channel) = img_ycbcr.shape img_y, img_cb, img_cr = np.split(img_ycbcr, indices_or_sections=channel, axis=2) size_lr = (int(rows // self.config['upscale']), int(cols // self.config['upscale'])) # img_y_lr = cv2.resize(img_y.squeeze(), dsize=(int(cols // self.config['upscale']), int(rows // self.config['upscale'])), # interpolation=cv2.INTER_CUBIC) # img_y_lr = misc.imresize(img_y.squeeze(), size=size_lr, interp='bicubic', mode='F') img_y_lr = imresize(img_y.squeeze(), output_shape=size_lr) img_cb = imresize(img_cb.squeeze(), output_shape=size_lr) img_cr = imresize(img_cr.squeeze(), output_shape=size_lr) img = imresize(img, output_shape=size_lr) # import matplotlib.pyplot as plt # plt.imshow(img_y_lr, cmap ='gray') # plt.show() img_bundle = { 'name': os.path.basename(file), 'origin': img, 'x': img_y_lr, 'y': img_ycbcr, 'cb': img_cb.squeeze(), 'cr': img_cr.squeeze(), 'size': img_ycbcr.shape[0:-1] } # img_bundle = {'name': os.path.basename(file), 'x': img_y_lr, 'y': img_y, 'cb': img_cb.squeeze(), # 'cr': img_cr.squeeze(), # 'size': size_lr} img_list.append(img_bundle) return img_list
def __init__(self, image_dir, is_gray=False, preload=False): super(SampleLoader, self).__init__() self.image_filenames = [] self.preload = preload all_files = os.walk(image_dir) for path, dir_list, file_list in all_files: self.image_filenames.extend( join(path, x) for x in file_list if is_image_file(x)) if self.preload: self.image_list = [] for file in self.image_filenames: img = Image.open(file).convert('RGB') self.image_list.append(img) self.is_gray = is_gray