Exemple #1
0
    def __init__(self,opt):
        self.opt = opt
        self.isTrain = opt.istrain
        self.Tensor = torch.cuda.FloatTensor

        self.netG_A = state2state(opt=self.opt).cuda()
        self.netG_B = state2state(opt=self.opt).cuda()
        self.net_action_G_A = AGmodel(flag='A2B',opt=self.opt).cuda()
        self.net_action_G_B = AGmodel(flag='B2A',opt=self.opt).cuda()
        self.netF_A = Fmodel(self.opt).cuda()
        self.netF_B = ImgFmodel(opt=self.opt).cuda()
        self.dataF = Robotdata.get_loader(opt)
        self.train_forward_state(pretrained=opt.pretrain_f)
        #self.train_forward_img(pretrained=True)

        self.reset_buffer()


        # if self.isTrain:
        self.netD_A = stateDmodel(opt=self.opt).cuda()
        self.netD_B = stateDmodel(opt=self.opt).cuda()
        self.net_action_D_A = ADmodel(opt=self.opt).cuda()
        self.net_action_D_B = ADmodel(opt=self.opt).cuda()

        # if self.isTrain:
        self.fake_A_pool = ImagePool(pool_size=128)
        self.fake_B_pool = ImagePool(pool_size=128)
        self.fake_action_A_pool = ImagePool(pool_size=128)
        self.fake_action_B_pool = ImagePool(pool_size=128)
        # define loss functions
        self.criterionGAN = GANLoss(tensor=self.Tensor).cuda()
        if opt.loss == 'l1':
            self.criterionCycle = nn.L1Loss()
        elif opt.loss == 'l2':
            self.criterionCycle = nn.MSELoss()
        self.ImgcriterionCycle = nn.MSELoss()
        self.StatecriterionCycle = nn.L1Loss()
        # initialize optimizers
        parameters = [{'params':self.netF_A.parameters(),'lr':self.opt.F_lr},
                     {'params': self.netF_B.parameters(), 'lr': self.opt.F_lr},
                     {'params': self.netG_A.parameters(), 'lr': self.opt.G_lr},
                     {'params':self.netG_B.parameters(),'lr':self.opt.G_lr},
                     {'params': self.net_action_G_A.parameters(), 'lr': self.opt.A_lr},
                     {'params': self.net_action_G_B.parameters(), 'lr': self.opt.A_lr}]
        self.optimizer_G = torch.optim.Adam(parameters)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters())
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters())
        self.optimizer_action_D_A = torch.optim.Adam(self.net_action_D_A.parameters())
        self.optimizer_action_D_B = torch.optim.Adam(self.net_action_D_B.parameters())

        print('---------- Networks initialized ---------------')
        print('-----------------------------------------------')
Exemple #2
0
    def __init__(self, sess, args):
        self.sess = sess
        self.args = args

        self.batch_size = args.batch_size
        self.image_size = args.fine_size
        self.input_c_dim = args.input_nc
        self.output_c_dim = args.output_nc
        self.L1_lambda = args.L1_lambda
        self.dataset_dir = args.dataset_dir

        self.discriminator = discriminator
        if args.use_resnet:
            self.generator = generator_resnet_tiny
        else:
            self.generator = generator_unet
        if args.use_lsgan:
            self.criterionGAN = mae_criterion
        else:
            self.criterionGAN = sce_criterion

        OPTIONS = namedtuple(
            'OPTIONS',
            'batch_size image_size gf_dim df_dim output_c_dim is_training')
        self.options = OPTIONS._make(
            (args.batch_size, args.fine_size, args.ngf, args.ndf,
             args.output_nc, args.phase == 'train'))

        print("build model...", end=" ", flush=True)
        self._build_model()
        self.saver = tf.train.Saver(max_to_keep=3)
        self.pool = ImagePool(args.max_size)
        print("done.", flush=True)

        if self.args.phase == "test":
            print("load pre-trained model from checkpoints...", flush=True)
            if self.load(args.checkpoint_dir):
                print("done.", flush=True)
            else:
                print("failed!!!", flush=True)
Exemple #3
0
class SSCycleGANModel():
    def __init__(self,opt):
        self.opt = opt
        self.isTrain = opt.istrain
        self.Tensor = torch.cuda.FloatTensor

        self.netG_A = state2state(opt=self.opt).cuda()
        self.netG_B = state2state(opt=self.opt).cuda()
        self.net_action_G_A = AGmodel(flag='A2B',opt=self.opt).cuda()
        self.net_action_G_B = AGmodel(flag='B2A',opt=self.opt).cuda()
        self.netF_A = Fmodel(self.opt).cuda()
        self.netF_B = ImgFmodel(opt=self.opt).cuda()
        self.dataF = Robotdata.get_loader(opt)
        self.train_forward_state(pretrained=opt.pretrain_f)
        #self.train_forward_img(pretrained=True)

        self.reset_buffer()


        # if self.isTrain:
        self.netD_A = stateDmodel(opt=self.opt).cuda()
        self.netD_B = stateDmodel(opt=self.opt).cuda()
        self.net_action_D_A = ADmodel(opt=self.opt).cuda()
        self.net_action_D_B = ADmodel(opt=self.opt).cuda()

        # if self.isTrain:
        self.fake_A_pool = ImagePool(pool_size=128)
        self.fake_B_pool = ImagePool(pool_size=128)
        self.fake_action_A_pool = ImagePool(pool_size=128)
        self.fake_action_B_pool = ImagePool(pool_size=128)
        # define loss functions
        self.criterionGAN = GANLoss(tensor=self.Tensor).cuda()
        if opt.loss == 'l1':
            self.criterionCycle = nn.L1Loss()
        elif opt.loss == 'l2':
            self.criterionCycle = nn.MSELoss()
        self.ImgcriterionCycle = nn.MSELoss()
        self.StatecriterionCycle = nn.L1Loss()
        # initialize optimizers
        parameters = [{'params':self.netF_A.parameters(),'lr':self.opt.F_lr},
                     {'params': self.netF_B.parameters(), 'lr': self.opt.F_lr},
                     {'params': self.netG_A.parameters(), 'lr': self.opt.G_lr},
                     {'params':self.netG_B.parameters(),'lr':self.opt.G_lr},
                     {'params': self.net_action_G_A.parameters(), 'lr': self.opt.A_lr},
                     {'params': self.net_action_G_B.parameters(), 'lr': self.opt.A_lr}]
        self.optimizer_G = torch.optim.Adam(parameters)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters())
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters())
        self.optimizer_action_D_A = torch.optim.Adam(self.net_action_D_A.parameters())
        self.optimizer_action_D_B = torch.optim.Adam(self.net_action_D_B.parameters())

        print('---------- Networks initialized ---------------')
        print('-----------------------------------------------')


    def train_forward_state(self,pretrained=False):
        weight_path = os.path.join(self.opt.data_root,'data_{}/pred.pth'.format(self.opt.test_id1))
        if pretrained:
            self.netF_A.load_state_dict(torch.load(weight_path))
            print('forward model has loaded!')
            return None
        optimizer = torch.optim.Adam(self.netF_A.parameters(),lr=1e-3)
        loss_fn = nn.L1Loss()
        for epoch in range(50):
            epoch_loss = 0
            for i,item in enumerate(tqdm(self.dataF)):
                state, action, result = item[1]
                state = state.float().cuda()
                action = action.float().cuda()
                result = result.float().cuda()
                out = self.netF_A(state, action)
                loss = loss_fn(out, result)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item()
            print('epoch:{} loss:{:.7f}'.format(epoch,epoch_loss/len(self.dataF)))
            torch.save(self.netF_A.state_dict(), weight_path)
        print('forward model has been trained!')

    def train_forward_img(self,pretrained=False):
        weight_path = './model/imgpred.pth'
        if pretrained:
            self.netF_B.load_state_dict(torch.load(weight_path))
            return None
        optimizer = torch.optim.Adam(self.netF_B.parameters(),lr=1e-3)
        loss_fn = nn.MSELoss()
        for epoch in range(50):
            epoch_loss = 0
            for i,item in enumerate(tqdm(self.dataF)):
                state, action, result = item[1]
                state = state.float().cuda()
                action = action.float().cuda()
                result = result.float().cuda()
                out = self.netF_B(state, action)*100
                loss = loss_fn(out, result)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item()
            print('epoch:{} loss:{:.7f}'.format(epoch,epoch_loss/len(self.dataF)))
            torch.save(self.netF_B.state_dict(), weight_path)
        print('forward model has been trained!')

    def set_input(self, input):
        # A is state
        self.input_A = input[1][0]

        # B is img
        self.input_Bt0 = input[2][0]
        self.input_Bt1 = input[2][1]
        self.action = input[0][1]
        self.gt0 = input[2][0].float().cuda()
        self.gt1 = input[2][1].float().cuda()


    def forward(self):
        self.real_A = Variable(self.input_A).float().cuda()
        self.real_Bt0 = Variable(self.input_Bt0).float().cuda()
        self.real_Bt1 = Variable(self.input_Bt1).float().cuda()
        self.action = Variable(self.action).float().cuda()


    def test(self):
        # forward
        self.forward()
        # G_A and G_B
        self.backward_G()
        self.backward_D_B()


    def backward_D_basic(self, netD, real, fake):
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        # backward
        if self.isTrain:
            loss_D.backward()
        return loss_D

    def backward_D_B(self):
        fake_A = self.fake_A_pool.query(self.fake_At0)
        loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
        self.loss_D_B = loss_D_B.item()


    def backward_G(self):
        lambda_G_B0 = self.opt.lambda_G0
        lambda_G_B1 = self.opt.lambda_G1
        lambda_F = self.opt.lambda_F
        lambda_C = 100.


        # GAN loss D_B(G_B(B))
        fake_At0 = self.netG_B(self.real_Bt0)
        pred_fake = self.netD_B(fake_At0)
        loss_G_Bt0 = self.criterionGAN(pred_fake, True) * lambda_G_B0

        rec_At0 = self.netG_A(fake_At0)
        loss_cycle_original_A = self.criterionCycle(rec_At0,self.real_Bt0) * lambda_C

        # GAN loss D_B(G_B(B))
        fake_Bt0 = self.netG_A(self.real_A)
        pred_fake = self.netD_A(fake_Bt0)
        loss_G_At0 = self.criterionGAN(pred_fake, True) * lambda_G_B0

        rec_Bt0 = self.netG_B(fake_Bt0)
        loss_cycle_original_B = self.criterionCycle(rec_Bt0,self.real_A) * lambda_C


        # GAN loss D_B(G_B(B))
        fake_At1 = self.netF_A(fake_At0,self.action)
        pred_fake = self.netD_B(fake_At1)
        loss_G_Bt1 = self.criterionGAN(pred_fake, True) * lambda_G_B1

        # cycle loss
        pred_At1 = self.netG_B(self.real_Bt1)
        cycle_label = torch.zeros_like(fake_At1).float().cuda()
        loss_cycle = self.criterionCycle(fake_At1-pred_At1,cycle_label) * lambda_F

        self.loss_state_lt0 = self.criterionCycle(fake_At0, self.gt0)
        self.loss_state_lt1 = self.criterionCycle(pred_At1, self.gt1)

        # combined loss
        loss_cycle_original = loss_cycle_original_A + loss_cycle_original_B + loss_G_At0
        loss_G = loss_G_Bt0 + loss_G_Bt1 + loss_cycle + loss_cycle_original
        loss_G = loss_G_Bt0 + loss_G_Bt1 + loss_cycle
        # loss_G = self.loss_state_lt0*10+self.loss_state_lt1*10

        if self.isTrain:
            loss_G.backward()

        self.fake_At0 = fake_At0.data
        self.fake_At1 = fake_At1.data

        self.loss_G_Bt0 = loss_G_Bt0.item()
        self.loss_G_Bt1 = loss_G_Bt1.item()
        self.loss_cycle = loss_cycle.item()

        self.loss_state_lt0 = self.loss_state_lt0.item()
        self.loss_state_lt1 = self.loss_state_lt1.item()
        self.gt_buffer0.append(self.gt0.cpu().data.numpy())
        self.pred_buffer0.append(self.fake_At0.cpu().data.numpy())
        self.gt_buffer1.append(self.gt1.cpu().data.numpy())
        self.pred_buffer1.append(self.fake_At1.cpu().data.numpy())

    def optimize_parameters(self):
        # forward
        self.forward()
        # G_A and G_B
        self.optimizer_G.zero_grad()
        self.backward_G()
        self.optimizer_G.step()
        # D_B
        self.optimizer_D_B.zero_grad()
        self.backward_D_B()
        self.optimizer_D_B.step()

    def get_current_errors(self):
        ret_errors = OrderedDict([('L_t0',self.loss_state_lt0), ('L_t1',self.loss_state_lt1),
                                  ('D_B', self.loss_D_B), ('G_B0', self.loss_G_Bt0),
                                  ('G_B1', self.loss_G_Bt1), ('Cyc',  self.loss_cycle)])
        return ret_errors

    # helper saving function that can be used by subclasses
    def save_network(self, network, network_label, path):
        save_filename = 'model_{}.pth'.format(network_label)
        save_path = os.path.join(path, save_filename)
        torch.save(network.state_dict(), save_path)

    def save(self, path):
        self.save_network(self.netG_B, 'G_B', path)
        self.save_network(self.netD_B, 'D_B', path)
        self.save_network(self.netG_A, 'G_A', path)
        self.save_network(self.netD_A, 'D_A', path)

        self.save_network(self.net_action_G_B, 'action_G_B', path)
        self.save_network(self.net_action_D_B, 'action_D_B', path)
        self.save_network(self.net_action_G_A, 'action_G_A', path)
        self.save_network(self.net_action_D_A, 'action_D_A', path)

    def load_network(self, network, network_label, path):
        weight_filename = 'model_{}.pth'.format(network_label)
        weight_path = os.path.join(path, weight_filename)
        network.load_state_dict(torch.load(weight_path))

    def load(self,path):
        self.load_network(self.netG_B, 'G_B', path)
        self.load_network(self.netD_B, 'D_B', path)
        self.load_network(self.netG_A, 'G_A', path)
        self.load_network(self.netD_A, 'D_A', path)

        self.load_network(self.net_action_G_B, 'action_G_B', path)
        self.load_network(self.net_action_D_B, 'action_D_B', path)
        self.load_network(self.net_action_G_A, 'action_G_A', path)
        self.load_network(self.net_action_D_A, 'action_D_A', path)

    def show_points(self,gt_data,pred_data):
        print(abs(gt_data-pred_data).mean(0))
        ncols = int(np.sqrt(gt_data.shape[1]))
        nrows = int(np.sqrt(gt_data.shape[1]))+1
        assert (ncols*nrows>=gt_data.shape[1])
        _, axes = plt.subplots(ncols, nrows, figsize=(nrows * 3, ncols * 3))
        axes = axes.flatten()

        for ax_i, ax in enumerate(axes):
            if ax_i>=gt_data.shape[1]:
                continue
            ax.scatter(gt_data[:, ax_i], pred_data[:, ax_i], s=3, label='xyz_{}'.format(ax_i))


    def npdata(self,item):
        return item.cpu().data.numpy()

    def reset_buffer(self):
        self.gt_buffer0 = []
        self.pred_buffer0 = []
        self.gt_buffer1 = []
        self.pred_buffer1 = []


    def visual(self,path):
        gt_data = np.vstack(self.gt_buffer0)
        pred_data = np.vstack(self.pred_buffer0)
        self.show_points(gt_data,pred_data)
        plt.legend()
        plt.savefig(path)
        plt.cla()
        plt.clf()

        gt_data = np.vstack(self.gt_buffer1)
        pred_data = np.vstack(self.pred_buffer1)
        self.show_points(gt_data, pred_data)
        plt.legend()
        plt.savefig(path.replace('.jpg','_step1.jpg'))
        self.reset_buffer()
Exemple #4
0
    def __init__(self,opt):
        self.opt = opt
        self.isTrain = opt.istrain
        self.env = dmc2gym.make(
            domain_name=opt.domain_name,
            task_name=opt.task_name,
            seed=0,
            visualize_reward=False,
            from_pixels=True,
            height=256,
            width=256,
            frame_skip=opt.frame_skip
        )

        self.env.seed(0)
        # self.state_dim = self.env.observation_space.shape[0]
        self.state_dim = self.env.observation_space.shape[0] if opt.state_dim==0 else opt.state_dim
        self.action_dim = self.env.action_space.shape[0]
        if self.opt.action_dim == 0:
            self.action_dim = self.env.action_space.shape[0]
        else:
            self.action_dim = self.opt.action_dim

        opt.state_dim = self.state_dim
        opt.action_dim = self.action_dim
        self.max_action = float(self.env.action_space.high[0])
        self.img_policy = ImgPolicy(opt)

        self.Tensor = torch.cuda.FloatTensor
        self.netG_A = img2state(opt=self.opt).cuda()
        self.netG_B = img2state(opt=self.opt).cuda()
        self.net_action_G_A = AGmodel(flag='A2B',opt=self.opt).cuda()
        self.net_action_G_B = AGmodel(flag='B2A',opt=self.opt).cuda()
        self.netF_A = Fmodel(self.opt).cuda()

        self.reset_buffer()

        # if self.isTrain:
        self.netD_A = imgDmodel(opt=self.opt).cuda()
        self.netD_B = stateDmodel(opt=self.opt).cuda()
        self.net_action_D_A = ADmodel(opt=self.opt).cuda()
        self.net_action_D_B = ADmodel(opt=self.opt).cuda()

        # if self.isTrain:
        self.fake_A_pool = ImagePool(pool_size=128)
        self.fake_B_pool = ImagePool(pool_size=128)
        self.fake_action_A_pool = ImagePool(pool_size=128)
        self.fake_action_B_pool = ImagePool(pool_size=128)
        # define loss functions
        self.criterionGAN = GANLoss(tensor=self.Tensor).cuda()
        if opt.loss == 'l1':
            self.criterionCycle = nn.L1Loss()
        elif opt.loss == 'l2':
            self.criterionCycle = nn.MSELoss()
        else:
            self.criterionCycle = nn.SmoothL1Loss()
        self.ImgcriterionCycle = nn.MSELoss()
        self.StatecriterionCycle = nn.L1Loss()
        # initialize optimizers
        parameters = [{'params':self.netF_A.parameters(),'lr':self.opt.F_lr},
                     # {'params': self.netF_B.parameters(), 'lr': self.opt.F_lr},
                     # {'params': self.netG_A.parameters(), 'lr': self.opt.G_lr},
                     {'params':self.netG_B.parameters(),'lr':self.opt.G_lr},]
                     # {'params': self.net_action_G_A.parameters(), 'lr': self.opt.A_lr},
                     # {'params': self.net_action_G_B.parameters(), 'lr': self.opt.A_lr}]
        self.optimizer_G = torch.optim.Adam(parameters)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters())
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters())
        self.optimizer_action_D_A = torch.optim.Adam(self.net_action_D_A.parameters())
        self.optimizer_action_D_B = torch.optim.Adam(self.net_action_D_B.parameters())

        self.use_mask = opt.use_mask
        self.mask = np.array(opt.mask)
        self.mask = torch.tensor(self.mask).float()

        print('---------- Networks initialized ---------------')
        print('-----------------------------------------------')
Exemple #5
0
class CycleGANModel():
    def __init__(self,opt):
        self.opt = opt
        self.isTrain = opt.istrain
        self.env = dmc2gym.make(
            domain_name=opt.domain_name,
            task_name=opt.task_name,
            seed=0,
            visualize_reward=False,
            from_pixels=True,
            height=256,
            width=256,
            frame_skip=opt.frame_skip
        )

        self.env.seed(0)
        # self.state_dim = self.env.observation_space.shape[0]
        self.state_dim = self.env.observation_space.shape[0] if opt.state_dim==0 else opt.state_dim
        self.action_dim = self.env.action_space.shape[0]
        if self.opt.action_dim == 0:
            self.action_dim = self.env.action_space.shape[0]
        else:
            self.action_dim = self.opt.action_dim

        opt.state_dim = self.state_dim
        opt.action_dim = self.action_dim
        self.max_action = float(self.env.action_space.high[0])
        self.img_policy = ImgPolicy(opt)

        self.Tensor = torch.cuda.FloatTensor
        self.netG_A = img2state(opt=self.opt).cuda()
        self.netG_B = img2state(opt=self.opt).cuda()
        self.net_action_G_A = AGmodel(flag='A2B',opt=self.opt).cuda()
        self.net_action_G_B = AGmodel(flag='B2A',opt=self.opt).cuda()
        self.netF_A = Fmodel(self.opt).cuda()

        self.reset_buffer()

        # if self.isTrain:
        self.netD_A = imgDmodel(opt=self.opt).cuda()
        self.netD_B = stateDmodel(opt=self.opt).cuda()
        self.net_action_D_A = ADmodel(opt=self.opt).cuda()
        self.net_action_D_B = ADmodel(opt=self.opt).cuda()

        # if self.isTrain:
        self.fake_A_pool = ImagePool(pool_size=128)
        self.fake_B_pool = ImagePool(pool_size=128)
        self.fake_action_A_pool = ImagePool(pool_size=128)
        self.fake_action_B_pool = ImagePool(pool_size=128)
        # define loss functions
        self.criterionGAN = GANLoss(tensor=self.Tensor).cuda()
        if opt.loss == 'l1':
            self.criterionCycle = nn.L1Loss()
        elif opt.loss == 'l2':
            self.criterionCycle = nn.MSELoss()
        else:
            self.criterionCycle = nn.SmoothL1Loss()
        self.ImgcriterionCycle = nn.MSELoss()
        self.StatecriterionCycle = nn.L1Loss()
        # initialize optimizers
        parameters = [{'params':self.netF_A.parameters(),'lr':self.opt.F_lr},
                     # {'params': self.netF_B.parameters(), 'lr': self.opt.F_lr},
                     # {'params': self.netG_A.parameters(), 'lr': self.opt.G_lr},
                     {'params':self.netG_B.parameters(),'lr':self.opt.G_lr},]
                     # {'params': self.net_action_G_A.parameters(), 'lr': self.opt.A_lr},
                     # {'params': self.net_action_G_B.parameters(), 'lr': self.opt.A_lr}]
        self.optimizer_G = torch.optim.Adam(parameters)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters())
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters())
        self.optimizer_action_D_A = torch.optim.Adam(self.net_action_D_A.parameters())
        self.optimizer_action_D_B = torch.optim.Adam(self.net_action_D_B.parameters())

        self.use_mask = opt.use_mask
        self.mask = np.array(opt.mask)
        self.mask = torch.tensor(self.mask).float()

        print('---------- Networks initialized ---------------')
        print('-----------------------------------------------')

    def parallel_init(self,device_ids=[0]):
        self.netG_B = torch.nn.DataParallel(self.netG_B,device_ids=device_ids)
        self.netF_A = torch.nn.DataParallel(self.netF_A,device_ids=device_ids)
        self.netD_A = torch.nn.DataParallel(self.netD_A,device_ids=device_ids)
        self.netD_B = torch.nn.DataParallel(self.netD_B,device_ids=device_ids)

    def train_forward_state(self,dataF,pretrained=False):
        if self.use_mask:
            weight_path = os.path.join(self.opt.log_root, '{}_{}_data'.format(self.opt.domain_name, self.opt.task_name),
                                       '{}_{}/pred_mask.pth'.format(self.opt.data_type1, self.opt.data_id1))
        else:
            weight_path = os.path.join(self.opt.log_root, '{}_{}_data'.format(self.opt.domain_name, self.opt.task_name),
                                       '{}_{}/pred.pth'.format(self.opt.data_type1, self.opt.data_id1))
        if pretrained:
            self.netF_A.load_state_dict(torch.load(weight_path))
            print('forward model has loaded!')
            return None
        lr = 1e-3
        optimizer = torch.optim.Adam(self.netF_A.parameters(),lr=lr)
        loss_fn = nn.L1Loss()
        data_size = len(dataF)
        for epoch in range(self.opt.f_epoch):
            epoch_loss, cmp_loss = 0, 0
            if epoch in [3,7,10,15]:
                lr *= 0.5
                optimizer = torch.optim.Adam(self.netF_A.parameters(), lr=lr)
            for i,item in enumerate(tqdm(dataF)):
                if i>data_size*0.8:
                    continue
                state, action, result = item
                state = state.float().cuda()
                action = action.float().cuda()
                result = result.float().cuda()
                out = self.netF_A(state, action)
                if self.use_mask:
                    loss = ((out-result)*(self.mask).cuda()).abs().mean()
                else:
                    loss = loss_fn(out, result)
                # loss = loss_fn(out, result)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item()
                cmp_loss += loss_fn(state,result).item()
            print('epoch:{} loss:{:.7f} cmp_loss:{:.7f}'
                  .format(epoch,epoch_loss/(0.8*data_size),cmp_loss/(0.8*data_size)))
            torch.save(self.netF_A.state_dict(), weight_path)
        print('forward model has been trained!')

        print('forward model starts to evaluate!')
        epoch_loss, cmp_loss = 0, 0
        for i, item in enumerate(tqdm(dataF)):
            if i<data_size*0.8:
                continue
            state, action, result = item
            state = state.float().cuda()
            action = action.float().cuda()
            result = result.float().cuda()
            out = self.netF_A(state, action)
            loss = loss_fn(out, result)
            epoch_loss += loss.item()
            cmp_loss += loss_fn(state, result).item()
        print('loss:{:.7f} cmp_loss:{:.7f}'.
              format(epoch_loss/(0.2*data_size), cmp_loss/(0.2*data_size)))


    def set_input(self, input):
        # A is state
        self.input_A = input[1][0]

        # B is img
        self.input_Bt0 = input[0][0]
        self.input_Bt1 = input[0][2]
        self.action = input[0][1]
        self.gt0 = input[2][0].float().cuda()
        self.gt1 = input[2][1].float().cuda()


    def forward(self):
        self.real_A = Variable(self.input_A).float().cuda()
        self.real_Bt0 = Variable(self.input_Bt0).float().cuda()
        self.real_Bt1 = Variable(self.input_Bt1).float().cuda()
        self.action = Variable(self.action).float().cuda()


    def test(self):
        # forward
        self.forward()
        # G_A and G_B
        self.backward_G()
        self.backward_D_B()

    def backward_D_basic(self, netD, real, fake):
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        # backward
        if self.isTrain:
            loss_D.backward()
        return loss_D

    def backward_D_B(self):
        fake_A = self.fake_A_pool.query(self.fake_At0.detach())
        loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
        self.loss_D_B = loss_D_B.item()

    def backward_G(self):
        lambda_G_B0 = self.opt.lambda_G0
        lambda_G_B1 = self.opt.lambda_G1
        lambda_G_B2 = self.opt.lambda_G2
        lambda_F = self.opt.lambda_F

        # GAN loss D_B(G_B(B))
        fake_At0 = self.netG_B(self.real_Bt0)
        pred_fake = self.netD_B(fake_At0)
        loss_G_Bt0 = self.criterionGAN(pred_fake, True) * lambda_G_B0

        # GAN loss D_B(G_B(B))
        fake_At1 = self.netF_A(fake_At0,self.action)
        pred_fake = self.netD_B(fake_At1)
        loss_G_Bt1 = self.criterionGAN(pred_fake, True) * lambda_G_B1

        # cycle loss
        pred_At1 = self.netG_B(self.real_Bt1)
        cycle_label = torch.zeros_like(fake_At1).float().cuda()

        if self.use_mask:
            diff = (fake_At1 - pred_At1) * self.mask.cuda(device=fake_At1.device)
        else:
            diff = fake_At1 - pred_At1
        loss_cycle = self.criterionCycle(diff, cycle_label) * lambda_F

        pred_fake = self.netD_B(pred_At1)
        loss_G_Bt2 = self.criterionGAN(pred_fake, True) * lambda_G_B2

        self.loss_state_lt0 = nn.L1Loss()(fake_At0, self.gt0)
        self.loss_state_lt1 = nn.L1Loss()(pred_At1, self.gt1)

        # combined loss
        loss_G = loss_G_Bt0 + loss_G_Bt1 + loss_G_Bt2 + loss_cycle
        # loss_G = self.loss_state_lt0+self.loss_state_lt1


        if self.isTrain:
            loss_G.backward()

        self.fake_At0 = fake_At0.data
        self.fake_At1 = fake_At1.data

        self.loss_G_Bt0 = loss_G_Bt0.item()
        self.loss_G_Bt1 = loss_G_Bt1.item()
        self.loss_cycle = loss_cycle.item()

        self.loss_state_lt0 = self.loss_state_lt0.item()
        self.loss_state_lt1 = self.loss_state_lt1.item()
        self.gt_buffer0.append(self.gt0.cpu().data.numpy())
        self.pred_buffer0.append(self.fake_At0.cpu().data.numpy())
        self.gt_buffer1.append(self.gt1.cpu().data.numpy())
        self.pred_buffer1.append(self.fake_At1.cpu().data.numpy())

    def optimize_parameters(self):
        # forward
        self.forward()
        # G_A and G_B
        self.optimizer_G.zero_grad()
        self.backward_G()
        self.optimizer_G.step()
        # D_B
        self.optimizer_D_B.zero_grad()
        self.backward_D_B()
        self.optimizer_D_B.step()

        self.push_current_errors()

    def push_current_errors(self):
        ret_errors = OrderedDict([('L_t0',self.loss_state_lt0), ('L_t1',self.loss_state_lt1),
                                  ('D_B', self.loss_D_B), ('G_B0', self.loss_G_Bt0),
                                  ('G_B1', self.loss_G_Bt1), ('Cyc',  self.loss_cycle)])
        self.error.append(ret_errors)


    def get_current_errors(self):
        ret_errors = OrderedDict([('L_t0',self.loss_state_lt0), ('L_t1',self.loss_state_lt1),
                                  ('D_B', self.loss_D_B), ('G_B0', self.loss_G_Bt0),
                                  ('G_B1', self.loss_G_Bt1), ('Cyc',  self.loss_cycle)])
        for errors in self.error:
            for key, value in errors.items():
                ret_errors[key] += value
        for key, value in ret_errors.items():
            ret_errors[key] /= (len(self.error)+1)
        self.error = []
        return ret_errors

    # helper saving function that can be used by subclasses
    def save_network(self, network, network_label, path):
        save_filename = 'model_{}.pth'.format(network_label)
        save_path = os.path.join(path, save_filename)
        torch.save(network.state_dict(), save_path)

    def save(self, path):
        self.save_network(self.netG_B, 'G_B', path)
        self.save_network(self.netD_B, 'D_B', path)
        self.save_network(self.netG_A, 'G_A', path)
        self.save_network(self.netD_A, 'D_A', path)

        self.save_network(self.net_action_G_B, 'action_G_B', path)
        self.save_network(self.net_action_D_B, 'action_D_B', path)
        self.save_network(self.net_action_G_A, 'action_G_A', path)
        self.save_network(self.net_action_D_A, 'action_D_A', path)

    def load_network(self, network, network_label, path):
        weight_filename = 'model_{}.pth'.format(network_label)
        weight_path = os.path.join(path, weight_filename)
        network.load_state_dict(torch.load(weight_path))

    def load(self,path):
        self.load_network(self.netG_B, 'G_B', path)
        self.load_network(self.netD_B, 'D_B', path)
        self.load_network(self.netG_A, 'G_A', path)
        self.load_network(self.netD_A, 'D_A', path)

        self.load_network(self.net_action_G_B, 'action_G_B', path)
        self.load_network(self.net_action_D_B, 'action_D_B', path)
        self.load_network(self.net_action_G_A, 'action_G_A', path)
        self.load_network(self.net_action_D_A, 'action_D_A', path)

    def show_points(self,gt_data,pred_data):
        print(abs(gt_data-pred_data).mean(0))
        ncols = int(np.sqrt(gt_data.shape[1]))+1
        nrows = int(np.sqrt(gt_data.shape[1]))+1
        assert (ncols*nrows>=gt_data.shape[1])
        _, axes = plt.subplots(ncols, nrows, figsize=(nrows * 3, ncols * 3))
        axes = axes.flatten()

        for ax_i, ax in enumerate(axes):
            if ax_i>=gt_data.shape[1]:
                continue
            ax.scatter(gt_data[:, ax_i], pred_data[:, ax_i], s=3, label='xyz_{}'.format(ax_i))


    def npdata(self,item):
        return item.cpu().data.numpy()

    def reset_buffer(self):
        self.gt_buffer0 = []
        self.pred_buffer0 = []
        self.gt_buffer1 = []
        self.pred_buffer1 = []
        self.error = []


    def visual(self,path):
        gt_data = np.vstack(self.gt_buffer0)
        pred_data = np.vstack(self.pred_buffer0)
        self.show_points(gt_data,pred_data)
        # plt.legend()
        plt.savefig(path)
        plt.cla()
        plt.clf()

        gt_data = np.vstack(self.gt_buffer1)
        pred_data = np.vstack(self.pred_buffer1)
        self.show_points(gt_data, pred_data)
        # plt.legend()
        plt.savefig(path.replace('.jpg','_step1.jpg'))
        self.reset_buffer()
Exemple #6
0
class ActionCycleGANModel():
    def __init__(self, opt):
        self.opt = opt
        self.isTrain = opt.istrain
        self.Tensor = torch.cuda.FloatTensor

        self.netG_A = state2img(opt=self.opt).cuda()
        self.netG_B = img2state(opt=self.opt).cuda()
        self.net_action_G_A = AGmodel(flag='A2B', opt=self.opt).cuda()
        self.net_action_G_B = AGmodel(flag='B2A', opt=self.opt).cuda()
        self.netF_A = Fmodel(self.opt).cuda()
        self.netF_B = ImgFmodel(opt=self.opt).cuda()
        self.dataF = Robotdata.get_loader(opt)
        self.train_forward_state(pretrained=opt.pretrain_f)
        #self.train_forward_img(pretrained=True)

        self.reset_buffer()

        # if self.isTrain:
        self.netD_A = imgDmodel(opt=self.opt).cuda()
        self.netD_B = stateDmodel(opt=self.opt).cuda()
        self.net_action_D_A = ADmodel(opt=self.opt).cuda()
        self.net_action_D_B = ADmodel(opt=self.opt).cuda()

        # if self.isTrain:
        self.fake_A_pool = ImagePool(pool_size=128)
        self.fake_B_pool = ImagePool(pool_size=128)
        self.fake_action_A_pool = ImagePool(pool_size=128)
        self.fake_action_B_pool = ImagePool(pool_size=128)
        # define loss functions
        self.criterionGAN = GANLoss(tensor=self.Tensor).cuda()
        if opt.loss == 'l1':
            self.criterionCycle = nn.L1Loss()
        elif opt.loss == 'l2':
            self.criterionCycle = nn.MSELoss()
        self.ImgcriterionCycle = nn.MSELoss()
        self.StatecriterionCycle = nn.L1Loss()
        # initialize optimizers
        parameters = [{
            'params': self.netF_A.parameters(),
            'lr': self.opt.F_lr
        }, {
            'params': self.netF_B.parameters(),
            'lr': self.opt.F_lr
        }, {
            'params': self.netG_A.parameters(),
            'lr': self.opt.G_lr
        }, {
            'params': self.netG_B.parameters(),
            'lr': self.opt.G_lr
        }, {
            'params': self.net_action_G_A.parameters(),
            'lr': self.opt.G_lr
        }, {
            'params': self.net_action_G_B.parameters(),
            'lr': self.opt.G_lr
        }]
        self.optimizer_G = torch.optim.Adam(parameters)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters())
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters())
        self.optimizer_action_D_A = torch.optim.Adam(
            self.net_action_D_A.parameters())
        self.optimizer_action_D_B = torch.optim.Adam(
            self.net_action_D_B.parameters())

        print('---------- Networks initialized ---------------')
        print('-----------------------------------------------')

    def train_forward_state(self, pretrained=False):
        weight_path = './model/pred.pth'
        if pretrained:
            self.netF_A.load_state_dict(torch.load(weight_path))
            return None
        optimizer = torch.optim.Adam(self.netF_A.parameters(), lr=1e-3)
        loss_fn = nn.L1Loss()
        for epoch in range(50):
            epoch_loss = 0
            for i, item in enumerate(tqdm(self.dataF)):
                state, action, result = item[1]
                state = state.float().cuda()
                action = action.float().cuda()
                result = result.float().cuda()
                out = self.netF_A(state, action)
                loss = loss_fn(out, result)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item()
            print('epoch:{} loss:{:.7f}'.format(epoch,
                                                epoch_loss / len(self.dataF)))
            torch.save(self.netF_A.state_dict(), weight_path)
        print('forward model has been trained!')

    def train_forward_img(self, pretrained=False):
        weight_path = './model/imgpred.pth'
        if pretrained:
            self.netF_B.load_state_dict(torch.load(weight_path))
            return None
        optimizer = torch.optim.Adam(self.netF_B.parameters(), lr=1e-3)
        loss_fn = nn.MSELoss()
        for epoch in range(50):
            epoch_loss = 0
            for i, item in enumerate(tqdm(self.dataF)):
                state, action, result = item[1]
                state = state.float().cuda()
                action = action.float().cuda()
                result = result.float().cuda()
                out = self.netF_B(state, action) * 100
                loss = loss_fn(out, result)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item()
            print('epoch:{} loss:{:.7f}'.format(epoch,
                                                epoch_loss / len(self.dataF)))
            torch.save(self.netF_B.state_dict(), weight_path)
        print('forward model has been trained!')

    def set_input(self, input):
        # A is state
        self.input_At0 = input[1][0]
        self.input_At1 = input[1][2]
        self.input_action_A = input[1][1]

        # B is img
        self.input_Bt0 = input[0][0]
        self.input_Bt1 = input[0][2]
        self.input_action_B = input[0][1]
        self.gt0 = input[2][0].float().cuda()
        self.gt1 = input[2][1].float().cuda()

    def forward(self):
        self.real_At0 = Variable(self.input_At0).float().cuda()
        self.real_At1 = Variable(self.input_At1).float().cuda()
        self.real_Bt0 = Variable(self.input_Bt0).float().cuda()
        self.real_Bt1 = Variable(self.input_Bt1).float().cuda()
        self.action_A = Variable(self.input_action_A).float().cuda()
        self.action_B = Variable(self.input_action_B).float().cuda()

    def test(self):
        # forward
        self.forward()
        # G_A and G_B
        self.backward_G()
        self.backward_D_B()

    def backward_D_basic(self, netD, real, fake):
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        # backward
        if self.isTrain:
            loss_D.backward()
        return loss_D

    def backward_D_B(self):
        fake_A = self.fake_A_pool.query(self.fake_At0)
        loss_D_B = self.backward_D_basic(self.netD_B, self.real_At0, fake_A)
        self.loss_D_B = loss_D_B.item()

    def backward_D_A(self):
        fake_B = self.fake_B_pool.query(self.fake_Bt0)
        loss_D_A = self.backward_D_basic(self.netD_A, self.real_Bt0, fake_B)
        self.loss_D_A = loss_D_A.item()

    def backward_action_D_B(self):
        fake_action_A = self.fake_action_A_pool.query(self.fake_action_A)
        loss_action_D_B = self.backward_D_basic(self.net_action_D_B,
                                                self.action_A, fake_action_A)
        self.loss_action_D_B = loss_action_D_B.item()

    def backward_action_D_A(self):
        fake_action_B = self.fake_action_B_pool.query(self.fake_action_B)
        loss_action_D_A = self.backward_D_basic(self.net_action_D_A,
                                                self.action_B, fake_action_B)
        self.loss_action_D_A = loss_action_D_A.item()

    def backward_G(self):
        lambda_idt = 0.2
        lambda_C = self.opt.lambda_C
        lambda_G_B0 = 50.0
        lambda_G_B1 = 50.0
        lambda_G_action = 50.
        lambda_F = self.opt.lambda_F
        lambda_AC = self.opt.lambda_AC
        lambda_R = self.opt.lambda_R
        lambda_A_balance = 1.0

        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed.
            idt_A = self.net_action_G_A(self.action_B)
            loss_idt_A = self.criterionCycle(
                idt_A, self.action_B) * lambda_AC * lambda_idt
            # G_B should be identity if real_A is fed.
            idt_B = self.net_action_G_B(self.action_A)
            loss_idt_B = self.criterionCycle(
                idt_B, self.action_A) * lambda_AC * lambda_idt

            self.idt_A = idt_A.data
            self.idt_B = idt_B.data
            self.loss_idt_A = loss_idt_A.item()
            self.loss_idt_B = loss_idt_B.item()
        else:
            loss_idt_A = 0
            loss_idt_B = 0
            self.loss_idt_A = 0
            self.loss_idt_B = 0
        """
            GAN loss series
        """

        # GAN loss D_B(G_B(B)) for action
        fake_action_A = self.net_action_G_B(self.action_B)
        pred_fake = self.net_action_D_B(fake_action_A)
        loss_action_G_B = self.criterionGAN(pred_fake, True) * lambda_G_action

        # GAN loss D_A(G_A(A)) for action
        fake_action_B = self.net_action_G_A(self.action_A)
        pred_fake = self.net_action_D_A(fake_action_B)
        loss_action_G_A = self.criterionGAN(pred_fake, True) * lambda_G_action

        loss_gan_original = loss_action_G_B + loss_action_G_A + self.loss_idt_A + self.loss_idt_B
        """
            Cycle loss series
        """

        # Backward cycle loss for action_A
        rec_action_B = self.net_action_G_A(fake_action_A)
        loss_cycle_action_B = self.criterionCycle(rec_action_B,
                                                  self.action_B) * lambda_AC

        # Backward cycle loss for action_B
        rec_action_A = self.net_action_G_B(fake_action_B)
        loss_cycle_action_A = self.criterionCycle(rec_action_A,
                                                  self.action_A) * lambda_AC

        loss_cycle_original = loss_cycle_action_B + loss_cycle_action_A

        # combined loss
        loss_G = loss_gan_original + loss_cycle_original

        if self.isTrain:
            loss_G.backward()

        self.fake_At0 = self.gt0.data
        self.fake_At1 = self.gt1.data
        self.fake_Bt0 = self.gt0.data
        self.fake_Bt1 = self.gt1.data
        self.fake_action_A = fake_action_A.data
        self.fake_action_B = fake_action_B.data

        self.loss_G_action_B = loss_action_G_B.item()
        self.loss_G_action_A = loss_action_G_A.item()
        self.loss_cycle_action_A = loss_cycle_action_A.item()
        self.loss_cycle_action_B = loss_cycle_action_B.item()

        self.loss_state_lt0 = self.criterionCycle(self.fake_At0,
                                                  self.gt0).item()
        self.loss_state_lt1 = self.criterionCycle(self.fake_At1,
                                                  self.gt1).item()
        self.gt_buffer.append(self.gt0.cpu().data.numpy())
        self.gt_buffer.append(self.gt1.cpu().data.numpy())
        self.pred_buffer.append(self.fake_At0.cpu().data.numpy())
        self.pred_buffer.append(self.fake_At1.cpu().data.numpy())
        self.realA_buffer.append(self.action_A.cpu().data.numpy())
        self.fakeA_buffer.append(self.fake_action_B.cpu().data.numpy())
        self.realB_buffer.append(self.action_B.cpu().data.numpy())
        self.fakeB_buffer.append(self.fake_action_A.cpu().data.numpy())

    def optimize_parameters(self):
        # forward
        self.forward()
        # G_A and G_B
        self.optimizer_G.zero_grad()
        self.backward_G()
        self.optimizer_G.step()
        # action_D_B
        self.optimizer_action_D_B.zero_grad()
        self.backward_action_D_B()
        self.optimizer_action_D_B.step()
        # action_D_A
        self.optimizer_action_D_A.zero_grad()
        self.backward_action_D_A()
        self.optimizer_action_D_A.step()

    def get_current_errors(self):
        ret_errors = OrderedDict([('L_t0', self.loss_state_lt0),
                                  ('L_t1', self.loss_state_lt1),
                                  ('D_action_B', self.loss_action_D_B),
                                  ('D_action_A', self.loss_action_D_A),
                                  ('G_action_B', self.loss_G_action_B),
                                  ('G_action_A', self.loss_G_action_A),
                                  ('Cyc_action_B', self.loss_cycle_action_B),
                                  ('Cyc_action_A', self.loss_cycle_action_A)])
        return ret_errors

    # helper saving function that can be used by subclasses
    def save_network(self, network, network_label, path):
        save_filename = 'model_{}.pth'.format(network_label)
        save_path = os.path.join(path, save_filename)
        torch.save(network.state_dict(), save_path)

    def save(self, path):
        self.save_network(self.net_action_G_B, 'action_G_B', path)
        self.save_network(self.net_action_D_B, 'action_D_B', path)
        self.save_network(self.net_action_G_A, 'action_G_A', path)
        self.save_network(self.net_action_D_A, 'action_D_A', path)

    def load_network(self, network, network_label, path):
        weight_filename = 'model_{}.pth'.format(network_label)
        weight_path = os.path.join(path, weight_filename)
        network.load_state_dict(torch.load(weight_path))

    def load(self, path):
        self.load_network(self.netG_B, 'G_B', path)
        self.load_network(self.netD_B, 'D_B', path)
        self.load_network(self.netG_A, 'G_A', path)
        self.load_network(self.netD_A, 'D_A', path)

        self.load_network(self.net_action_G_B, 'action_G_B', path)
        self.load_network(self.net_action_D_B, 'action_D_B', path)
        self.load_network(self.net_action_G_A, 'action_G_A', path)
        self.load_network(self.net_action_D_A, 'action_D_A', path)

    def show_points(self):
        # num_images = min(imgs.shape[0],num_images)
        ncols = 2
        nrows = 4
        _, axes = plt.subplots(ncols, nrows, figsize=(nrows * 3, ncols * 3))
        axes = axes.flatten()
        gt_data = np.vstack(self.gt_buffer)
        pred_data = np.vstack(self.pred_buffer)
        print(abs(gt_data - pred_data).mean(0))

        realA = np.vstack(self.realA_buffer)
        fakeA = np.vstack(self.fakeA_buffer)
        realB = np.vstack(self.realB_buffer)
        fakeB = np.vstack(self.fakeB_buffer)

        for ax_i, ax in enumerate(axes):
            if ax_i < nrows:
                ax.scatter(realA[:, ax_i],
                           fakeA[:, ax_i],
                           s=3,
                           label='action A')
            else:
                ax.scatter(realB[:, ax_i - nrows],
                           fakeB[:, ax_i - nrows],
                           s=3,
                           label='action B')

    def npdata(self, item):
        return item.cpu().data.numpy()

    def reset_buffer(self):
        self.gt_buffer = []
        self.pred_buffer = []
        self.realA_buffer = []
        self.fakeA_buffer = []
        self.realB_buffer = []
        self.fakeB_buffer = []

    def visual(self, path):
        # plt.xlim(-4,4)
        # plt.ylim(-1.5,1.5)
        self.show_points()
        plt.legend()
        plt.savefig(path)
        plt.cla()
        plt.clf()
        self.reset_buffer()