def main(): # ---------------------------------------- # Preparation # ---------------------------------------- model_name = 'dncnn3' # 'dncnn3'- can be used for blind Gaussian denoising, JPEG deblocking (quality factor 5-100) and super-resolution (x234) # important! testset_name = 'bsd68' # test set, low-quality grayscale/color JPEG images n_channels = 1 # set 1 for grayscale image, set 3 for color image x8 = False # default: False, x8 to boost performance testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + model_name # fixed L_path = os.path.join( testsets, testset_name ) # L_path, for Low-quality grayscale/Y-channel JPEG images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) model_pool = 'model_zoo' # fixed model_path = os.path.join(model_pool, model_name + '.pth') logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- from models.network_dncnn import DnCNN as net model = net(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='R') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) logger.info(L_path) L_paths = util.get_image_paths(L_path) for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) logger.info('{:->4d}--> {:>10s}'.format(idx + 1, img_name + ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) if n_channels == 3: ycbcr = util.rgb2ycbcr(img_L, False) img_L = ycbcr[..., 0:1] img_L = util.single2tensor4(img_L) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ if not x8: img_E = model(img_L) else: img_E = utils_model.test_mode(model, img_L, mode=3) img_E = util.tensor2single(img_E) if n_channels == 3: ycbcr[..., 0] = img_E img_E = util.ycbcr2rgb(ycbcr) img_E = util.single2uint(img_E) # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name + '.png'))
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_dpsr', log_path='test_dpsr.log') logger = logging.getLogger('test_dpsr') # basic setting # ================================================ sf = 4 # scale factor noise_level_img = 0 / 255.0 # noise level of low quality image, default 0 noise_level_model = noise_level_img # noise level of model, default 0 show_img = True use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4) testsets = 'testsets' testset_current = 'BSD68' if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'dpsrgan' else: model_prefix = 'DPSR' save_suffix = 'dpsr' model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf)) iter_num = 15 # number of iterations, fixed n_channels = 3 # only color images, fixed border = sf**2 # shave boader to calculate PSNR, fixed # k_type = ('d', 'm', 'g') k_type = ('m') # motion blur kernel # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # load model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. Testing...'.format(model_path)) # -------------------------------- # read image (img) and kernel (k) # -------------------------------- test_results = OrderedDict() for k_type_n in range(len(k_type)): # --1--> L_folder, folder of Low-quality images testsubset_current = 'x%01d_%01s' % (sf, k_type[k_type_n]) L_folder = os.path.join(testsets, testset_current, testsubset_current) # --2--> E_folder, folder of Estimated images E_folder = os.path.join(testsets, testset_current, testsubset_current + '_' + save_suffix) util.mkdir(E_folder) # --3--> H_folder, folder of High-quality images H_folder = os.path.join(testsets, testset_current, 'GT') test_results['psnr_' + k_type[k_type_n]] = [] logger.info(L_folder) idx = 0 for im in os.listdir(os.path.join(L_folder)): if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith( '.png'): # -------------------------------- # (1) img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(im) img_L = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) util.imshow(img_L) if show_img else None np.random.seed(seed=0) # for reproducibility img_L = util.unit2single(img_L) + np.random.normal( 0, noise_level_img, img_L.shape) # -------------------------------- # (2) kernel # -------------------------------- k = loadmat(os.path.join(L_folder, img_name + '.mat'))['kernel'] k = k.astype(np.float32) k /= np.sum(k) # -------------------------------- # (3) get upperleft, denominator # -------------------------------- upperleft, denominator = utils_deblur.get_uperleft_denominator( img_L, k) # -------------------------------- # (4) get rhos and sigmas # -------------------------------- rhos, sigmas = utils_deblur.get_rho_sigma(sigma=max( 0.255 / 255., noise_level_model), iter_num=iter_num) # -------------------------------- # (5) main iteration # -------------------------------- z = img_L rhos = np.float32(rhos) sigmas = np.float32(sigmas) for i in range(iter_num): # -------------------------------- # step 1, Eq. (9) // FFT # -------------------------------- rho = rhos[i] if i != 0: z = util.imresize_np(z, 1 / sf, True) z = np.real( np.fft.ifft2( (upperleft + rho * np.fft.fft2(z, axes=(0, 1))) / (denominator + rho), axes=(0, 1))) # imsave('LR_deblurred_%02d.png'%i, np.clip(z, 0, 1)) # -------------------------------- # step 2, Eq. (12) // super-resolver # -------------------------------- sigma = torch.from_numpy(np.array(sigmas[i])) img_L = util.single2tensor4(z) noise_level_map = torch.ones( (1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(sigma) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # with torch.no_grad(): z = model(img_L) z = util.tensor2single(z) # -------------------------------- # (6) img_E # -------------------------------- img_E = util.single2uint(z) # np.uint8((z * 255.0).round()) # -------------------------------- # (7) img_H # -------------------------------- img_H = util.imread_uint(os.path.join(H_folder, img_name[:7] + '.png'), n_channels=n_channels) util.imshow( np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None psnr = util.calculate_psnr(img_E, img_H, border=border) logger.info('{:->4d}--> {:>10s}, {:.2f}dB'.format( idx, im, psnr)) test_results['psnr_' + k_type[k_type_n]].append(psnr) util.imsave(img_E, os.path.join(E_folder, img_name + ext)) ave_psnr = sum(test_results['psnr_' + k_type[k_type_n]]) / len( test_results['psnr_' + k_type[k_type_n]]) logger.info( '------> Average PSNR(RGB) of ({} - {}) is : {:.2f} dB'.format( testset_current, testsubset_current, ave_psnr))
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_srresnetplus_real', log_path='test_srresnetplus_real.log') logger = logging.getLogger('test_srresnetplus_real') # basic setting # ================================================ sf = 4 # from 2, 3 and 4 noise_level_img = 14./255. # noise level of low-quality image testsets = 'testsets' testset_current = 'real_imgs' use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4) im = 'frog.png' # frog.png if 'frog' in im: noise_level_img = 14./255. noise_level_model = noise_level_img # noise level of model if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'srganplus' else: model_prefix = 'DPSR' save_suffix = 'srresnet' model_path = os.path.join('DPSR_models', model_prefix+'x%01d.pth' % (sf)) show_img = True n_channels = 3 # only color images, fixed # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # (1) load trained model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. Testing...'.format(model_path)) # -------------------------------- # (2) L_folder, E_folder # -------------------------------- # --1--> L_folder, folder of Low-quality images L_folder = os.path.join(testsets, testset_current, 'LR') # L: Low quality # --2--> E_folder, folder of Estimated images E_folder = os.path.join(testsets, testset_current, 'x{:01d}_'.format(sf)+save_suffix) util.mkdir(E_folder) logger.info(L_folder) # for im in os.listdir(os.path.join(L_folder)): # if (im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png')) and 'kernel' not in im: # -------------------------------- # (3) load low-resolution image # -------------------------------- img_name, ext = os.path.splitext(im) img = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) h, w = img.shape[:2] util.imshow(img, title='Low-resolution image') if show_img else None img = util.uint2single(img) img_L = util.single2tensor4(img) # -------------------------------- # (4) do super-resolution # -------------------------------- noise_level_map = torch.ones((1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(noise_level_model) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # with torch.no_grad(): img_E = model(img_L) img_E = util.tensor2single(img_E) # -------------------------------- # (5) img_E # -------------------------------- img_E = util.single2uint(img_E[:h*sf, :w*sf]) # np.uint8((z[:h*sf, :w*sf] * 255.0).round()) logger.info('saving: sf = {}, {}.'.format(sf, img_name+'_x{}'.format(sf)+ext)) util.imsave(img_E, os.path.join(E_folder, img_name+'_x{}'.format(sf)+ext)) util.imshow(img_E, title='Recovered image') if show_img else None
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_srresnetplus', log_path='test_srresnetplus.log') logger = logging.getLogger('test_srresnetplus') # basic setting # ================================================ sf = 4 # scale factor noise_level_img = 0 / 255.0 # noise level of L image noise_level_model = noise_level_img show_img = True use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4) testsets = 'testsets' testset_current = 'Set5' n_channels = 3 # only color images, fixed border = sf # shave boader to calculate PSNR and SSIM if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'dpsrgan' else: model_prefix = 'DPSR' save_suffix = 'dpsr' model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf)) # -------------------------------- # L_folder, E_folder, H_folder # -------------------------------- # --1--> L_folder, folder of Low-quality images testsubset_current = 'x%01d' % (sf) L_folder = os.path.join(testsets, testset_current, testsubset_current) # --2--> E_folder, folder of Estimated images E_folder = os.path.join(testsets, testset_current, testsubset_current + '_' + save_suffix) util.mkdir(E_folder) # --3--> H_folder, folder of High-quality images H_folder = os.path.join(testsets, testset_current, 'GT') need_H = True if os.path.exists(H_folder) else False # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # load model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. \nTesting...'.format(model_path)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] idx = 0 logger.info(L_folder) for im in os.listdir(os.path.join(L_folder)): if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png'): logger.info('{:->4d}--> {:>10s}'.format( idx, im)) if not need_H else None # -------------------------------- # (1) img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(im) img = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) np.random.seed(seed=0) # for reproducibility img = util.unit2single(img) + np.random.normal( 0, noise_level_img, img.shape) util.imshow(img, title='Low-resolution image') if show_img else None img_L = util.single2tensor4(img) noise_level_map = torch.ones( (1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(noise_level_model) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # -------------------------------- # (2) img_E # -------------------------------- img_E = model(img_L) img_E = util.tensor2single(img_E) img_E = util.single2uint(img_E) # np.uint8((z * 255.0).round()) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(os.path.join(H_folder, im), n_channels=n_channels) img_H = util.modcrop(img_H, scale=sf) # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info( '{:->20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}.' .format(im, psnr, ssim, psnr_y, ssim_y)) else: logger.info( '{:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( im, psnr, ssim)) # -------------------------------- # save results # -------------------------------- util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None util.imsave( img_E, os.path.join(E_folder, img_name + '_x{}'.format(sf) + ext)) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'PSNR/SSIM(RGB) - {} - x{} -- PSNR: {:.2f} dB; SSIM: {:.4f}'. format(testset_current, sf, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( 'PSNR/SSIM( Y ) - {} - x{} -- PSNR: {:.2f} dB; SSIM: {:.4f}'. format(testset_current, sf, ave_psnr_y, ave_ssim_y))
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_dpsr_real', log_path='test_dpsr_real.log') logger = logging.getLogger('test_dpsr_real') global arg arg = parser.parse_args() # basic setting # ================================================ sf = arg.sf show_img = False noise_level_img = 8. / 255. #testsets = '/home/share2/wutong/DPSR/testsets/test/' #im = '0000115_01031_d_0000082.jpg' # chip.png colour.png # if 'chip' in im: # noise_level_img = 8./255. # elif 'colour' in im: #noise_level_img = 0.5/255. use_srganplus = False if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'dpsrgan' else: model_prefix = 'DPSR' save_suffix = 'dpsr' model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf)) iter_num = 15 # number of iterations n_channels = 3 # only color images, fixed # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # (1) load trained model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. Testing...'.format(model_path)) # -------------------------------- # (2) L_folder, E_folder # -------------------------------- # --1--> L_folder, folder of Low-quality images L_folder = os.path.join(arg.load) # L: Low quality # --2--> E_folder, folder of Estimated images E_folder = os.path.join(arg.save) util.mkdir(E_folder) logger.info(L_folder) # for im in os.listdir(os.path.join(L_folder)): # if (im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png')) and 'kernel' not in im: # -------------------------------- # (3) load low-resolution image # -------------------------------- img_list = os.listdir(L_folder) for im in img_list: img_path, ext = os.path.splitext(im) img_name = img_path.split('/')[-1] img = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) h, w = img.shape[:2] util.imshow(img, title='Low-resolution image') if show_img else None img = util.unit2single(img) # -------------------------------- # (4) load blur kernel # -------------------------------- # if os.path.exists(os.path.join(L_folder, img_name+'_kernel.mat')): # k = loadmat(os.path.join(L_folder, img_name+'.mat'))['kernel'] # k = k.astype(np.float64) # k /= k.sum() # elif os.path.exists(os.path.join(L_folder, img_name+'_kernel.png')): # k = cv2.imread(os.path.join(L_folder, img_name+'_kernel.png'), 0) # k = np.float64(k) # float64 ! # k /= k.sum() #else: k = utils_deblur.fspecial('gaussian', 5, 0.25) iter_num = 5 # -------------------------------- # (5) handle boundary # -------------------------------- img = utils_deblur.wrap_boundary_liu( img, utils_deblur.opt_fft_size( [img.shape[0] + k.shape[0] + 1, img.shape[1] + k.shape[1] + 1])) # -------------------------------- # (6) get upperleft, denominator # -------------------------------- upperleft, denominator = utils_deblur.get_uperleft_denominator(img, k) # -------------------------------- # (7) get rhos and sigmas # -------------------------------- rhos, sigmas = utils_deblur.get_rho_sigma(sigma=max( 0.255 / 255.0, noise_level_img), iter_num=iter_num) # -------------------------------- # (8) main iteration # -------------------------------- z = img rhos = np.float32(rhos) sigmas = np.float32(sigmas) for i in range(iter_num): logger.info('Iter: {:->4d}--> {}'.format(i + 1, im)) # -------------------------------- # step 1, Eq. (9) // FFT # -------------------------------- rho = rhos[i] if i != 0: z = util.imresize_np(z, 1 / sf, True) z = np.real( np.fft.ifft2((upperleft + rho * np.fft.fft2(z, axes=(0, 1))) / (denominator + rho), axes=(0, 1))) # -------------------------------- # step 2, Eq. (12) // super-resolver # -------------------------------- sigma = torch.from_numpy(np.array(sigmas[i])) img_L = util.single2tensor4(z) noise_level_map = torch.ones((1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(sigma) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # with torch.no_grad(): z = model(img_L) z = util.tensor2single(z) # -------------------------------- # (9) img_E # -------------------------------- img_E = util.single2uint( z[:h * sf, :w * sf]) # np.uint8((z[:h*sf, :w*sf] * 255.0).round()) logger.info('saving: sf = {}, {}.'.format( sf, img_name + '_x{}'.format(sf) + ext)) util.imsave(img_E, os.path.join(E_folder, img_name + ext)) util.imshow(img_E, title='Recovered image') if show_img else None