utils_train_test.array_stats(X_leaderboard)

# =============================================================================
# get output for leaderboard data
# =============================================================================
Y_leaderboard=utils_train_test.getOutputAllFolds(X_leaderboard,configs,binaryMask=False)
Y_leaderboard=utils_train_test.unpadArray(Y_leaderboard,configs.padSize)
#Y_leaderboard,_=utils_train_test.data_resize(Y_leaderboard,None,101,101)
utils_train_test.array_stats(Y_leaderboard)

# =============================================================================
# store predictions of Ensemble model for Leaderboard data
# =============================================================================
#utils_train_test.storePredictions(configs,Y_leaderboard,"test")
utils_train_test.storePredictionsWithIds(configs,Y_leaderboard,ids_leaderboard,"test")

# =============================================================================
# convert outputs to Run Length Dict
# =============================================================================
rlcDict=utils_train_test.converMasksToRunLengthDict(Y_leaderboard>=configs.maskThreshold,ids_leaderboard)    
  

# =============================================================================
# crate submission
# =============================================================================
utils_train_test.createSubmission(rlcDict,configs)




Exemple #2
0
# =============================================================================
X_leaderboard,_,ids_leaderboard,_=utils_train_test.load_data_classify_prob(configs,"test")
utils_train_test.array_stats(X_leaderboard)


# =============================================================================
# get predictions for leaderboard data
# =============================================================================
#Y_leaderboard=utils_train_test.getOutputAllFolds_classify_prob(X_leaderboard,configs)
Y_leaderboard,Y_leaderboard_soft,y_leaderboard=utils_train_test.getOutputAllFolds_classify_prob_ySoft(X_leaderboard,configs)


# =============================================================================
# store predictions of Ensemble model for Leaderboard data
# =============================================================================
utils_train_test.storePredictionsWithIds_classify(configs,Y_leaderboard_soft,y_leaderboard,ids_leaderboard,"test")

# =============================================================================
# convert outputs to Run Length Dict
# =============================================================================
rlcDict=utils_train_test.converMasksToRunLengthDict(Y_leaderboard,ids_leaderboard)    
  

# =============================================================================
# crate submission
# =============================================================================
utils_train_test.createSubmission(rlcDict,configs)