Exemple #1
0
    def predict(self, image, description):

        self.args.description = description
        self.args.image_path = image

        inverter = StyleGANInverter(
            self.args.model_name,
            mode=self.args.mode,
            learning_rate=self.args.learning_rate,
            iteration=self.args.num_iterations,
            reconstruction_loss_weight=1.0,
            perceptual_loss_weight=self.args.loss_weight_feat,
            regularization_loss_weight=self.args.loss_weight_enc,
            clip_loss_weight=self.args.loss_weight_clip,
            description=self.args.description,
            logger=None,
        )
        image_size = inverter.G.resolution

        # Invert the given image.
        image = resize_image(
            load_image(str(self.args.image_path)), (image_size, image_size)
        )
        _, viz_results = inverter.easy_invert(image, num_viz=self.args.num_results)

        out_path = Path(tempfile.mkdtemp()) / "out.png"
        save_image(str(out_path), viz_results[-1])
        return out_path
Exemple #2
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.isfile(args.image_path)
    output_dir = args.output_dir or f'results/inversion/test'
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    inverter = StyleGANInverter(
        args.model_name,
        mode=args.mode,
        learning_rate=args.learning_rate,
        iteration=args.num_iterations,
        reconstruction_loss_weight=1.0,
        perceptual_loss_weight=args.loss_weight_feat,
        regularization_loss_weight=args.loss_weight_enc,
        clip_loss_weight=args.loss_weight_clip,
        description=args.description,
        logger=None)
    image_size = inverter.G.resolution

    # Invert the given image.
    image = resize_image(load_image(args.image_path), (image_size, image_size))
    _, viz_results = inverter.easy_invert(image, num_viz=args.num_results)

    if args.mode == 'man':
        image_name = os.path.splitext(os.path.basename(args.image_path))[0]
    else:
        image_name = 'gen'
    save_image(f'{output_dir}/{image_name}_enc.png', viz_results[1])
    save_image(f'{output_dir}/{image_name}_inv.png', viz_results[-1])
    print(f'save {image_name} in {output_dir}')
def main():
  """Main function."""
  args = parse_args()
  os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
  assert os.path.exists(args.image_list)
  image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
  output_dir = args.output_dir or f'results/inversion/{image_list_name}'
  logger = setup_logger(output_dir, 'inversion.log', 'inversion_logger')

  logger.info(f'Loading model.')
  inverter = StyleGANInverter(
      args.model_name,
      learning_rate=args.learning_rate,
      iteration=args.num_iterations,
      reconstruction_loss_weight=1.0,
      perceptual_loss_weight=args.loss_weight_feat,
      regularization_loss_weight=args.loss_weight_enc,
      logger=logger)
  image_size = inverter.G.resolution

  # Load image list.
  logger.info(f'Loading image list.')
  image_list = []
  with open(args.image_list, 'r') as f:
    for line in f:
      image_list.append(line.strip())

  # Initialize visualizer.
  save_interval = args.num_iterations // args.num_results
  headers = ['Name', 'Original Image', 'Encoder Output']
  for step in range(1, args.num_iterations + 1):
    if step == args.num_iterations or step % save_interval == 0:
      headers.append(f'Step {step:06d}')
  viz_size = None if args.viz_size == 0 else args.viz_size
  visualizer = HtmlPageVisualizer(
      num_rows=len(image_list), num_cols=len(headers), viz_size=viz_size)
  visualizer.set_headers(headers)

  # Invert images.
  logger.info(f'Start inversion.')
  latent_codes = []
  for img_idx in tqdm(range(len(image_list)), leave=False):
    image_path = image_list[img_idx]
    image_name = os.path.splitext(os.path.basename(image_path))[0]
    image = resize_image(load_image(image_path), (image_size, image_size))
    code, viz_results = inverter.easy_invert(image, num_viz=args.num_results)
    latent_codes.append(code)
    save_image(f'{output_dir}/{image_name}_ori.png', image)
    save_image(f'{output_dir}/{image_name}_enc.png', viz_results[1])
    save_image(f'{output_dir}/{image_name}_inv.png', viz_results[-1])
    visualizer.set_cell(img_idx, 0, text=image_name)
    visualizer.set_cell(img_idx, 1, image=image)
    for viz_idx, viz_img in enumerate(viz_results[1:]):
      visualizer.set_cell(img_idx, viz_idx + 2, image=viz_img)

  # Save results.
  os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
  np.save(f'{output_dir}/inverted_codes.npy',
          np.concatenate(latent_codes, axis=0))
  visualizer.save(f'{output_dir}/inversion.html')
Exemple #4
0
def main():
    """Main function."""
    args = parse_args()
    if args.num <= 0:
        return
    if not args.save_raw_synthesis and not args.generate_html:
        return

    # Parse model configuration.
    if args.model_name not in MODEL_ZOO:
        raise SystemExit(f'Model `{args.model_name}` is not registered in '
                         f'`models/model_zoo.py`!')
    model_config = MODEL_ZOO[args.model_name].copy()
    url = model_config.pop('url')  # URL to download model if needed.

    # Get work directory and job name.
    if args.save_dir:
        work_dir = args.save_dir
    else:
        work_dir = os.path.join('work_dirs', 'synthesis')
    os.makedirs(work_dir, exist_ok=True)
    job_name = f'{args.model_name}_{args.num}'
    if args.save_raw_synthesis:
        os.makedirs(os.path.join(work_dir, job_name), exist_ok=True)

    # Build generation and get synthesis kwargs.
    print(f'Building generator for model `{args.model_name}` ...')
    generator = build_generator(**model_config)
    synthesis_kwargs = dict(trunc_psi=args.trunc_psi,
                            trunc_layers=args.trunc_layers,
                            randomize_noise=args.randomize_noise)
    print(f'Finish building generator.')

    # Load pre-trained weights.
    os.makedirs('checkpoints', exist_ok=True)
    checkpoint_path = os.path.join('checkpoints', args.model_name + '.pth')
    print(f'Loading checkpoint from `{checkpoint_path}` ...')
    if not os.path.exists(checkpoint_path):
        print(f'  Downloading checkpoint from `{url}` ...')
        subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])
        print(f'  Finish downloading checkpoint.')
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    if 'generator_smooth' in checkpoint:
        generator.load_state_dict(checkpoint['generator_smooth'])
    else:
        generator.load_state_dict(checkpoint['generator'])
    generator = generator.cuda()
    generator.eval()
    print(f'Finish loading checkpoint.')

    # Set random seed.
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # Sample and synthesize.
    print(f'Synthesizing {args.num} samples ...')
    indices = list(range(args.num))
    if args.generate_html:
        html = HtmlPageVisualizer(grid_size=args.num)
    for batch_idx in tqdm(range(0, args.num, args.batch_size)):
        sub_indices = indices[batch_idx:batch_idx + args.batch_size]
        print(sub_indices)
        code = torch.randn(len(sub_indices), generator.z_space_dim).cuda()
        print(code.shape)
        with torch.no_grad():
            images = generator(code, **synthesis_kwargs)['image']
            images = postprocess(images)
        for sub_idx, image in zip(sub_indices, images):
            if args.save_raw_synthesis:
                save_path = os.path.join(work_dir, job_name,
                                         f'{sub_idx:06d}.jpg')
                save_image(save_path, image)
            if args.generate_html:
                row_idx, col_idx = divmod(sub_idx, html.num_cols)
                html.set_cell(row_idx,
                              col_idx,
                              image=image,
                              text=f'Sample {sub_idx:06d}')
    if args.generate_html:
        html.save(os.path.join(work_dir, f'{job_name}.html'))
    print(f'Finish synthesizing {args.num} samples.')
Exemple #5
0
def training_loop(
                  submit_config,
                  Encoder_args            = {},
                  E_opt_args              = {},
                  D_opt_args              = {},
                  E_loss_args             = EasyDict(),
                  D_loss_args             = {},
                  lr_args                 = EasyDict(),
                  tf_config               = {},
                  dataset_args            = EasyDict(),
                  decoder_pkl             = EasyDict(),
                  drange_data             = [0, 255],
                  drange_net              = [-1,1],   # Dynamic range used when feeding image data to the networks.
                  mirror_augment          = False,
                  resume_run_id           = config.ENCODER_PICKLE_DIR,     # Run ID or network pkl to resume training from, None = start from scratch.
                  resume_snapshot         = None,     # Snapshot index to resume training from, None = autodetect.
                  image_snapshot_ticks    = 1,        # How often to export image snapshots?
                  network_snapshot_ticks  = 4,       # How often to export network snapshots?
                  max_iters               = 150000):

    tflib.init_tf(tf_config)

    with tf.name_scope('input'):
        real_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='real_image_train')
        real_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='real_image_test')
        real_split = tf.split(real_train, num_or_size_splits=submit_config.num_gpus, axis=0)

    with tf.device('/gpu:0'):
        if resume_run_id is not None:
            network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot)
            print('Loading networks from "%s"...' % network_pkl)
            E, G, D, Gs = misc.load_pkl(network_pkl)
            start = int(network_pkl.split('-')[-1].split('.')[0]) // submit_config.batch_size
            print('Start: ', start)
        else:
            print('Constructing networks...')
            G, D, Gs = misc.load_pkl(decoder_pkl.decoder_pkl)
            num_layers = Gs.components.synthesis.input_shape[1]
            E = tflib.Network('E', size=submit_config.image_size, filter=64, filter_max=1024, num_layers=num_layers, phase=True, **Encoder_args)
            start = 0

    E.print_layers(); Gs.print_layers(); D.print_layers()

    global_step0 = tf.Variable(start, trainable=False, name='learning_rate_step')
    learning_rate = tf.train.exponential_decay(lr_args.learning_rate, global_step0, lr_args.decay_step,
                                               lr_args.decay_rate, staircase=lr_args.stair)
    add_global0 = global_step0.assign_add(1)

    E_opt = tflib.Optimizer(name='TrainE', learning_rate=learning_rate, **E_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', learning_rate=learning_rate, **D_opt_args)

    E_loss_rec = 0.
    E_loss_adv = 0.
    D_loss_real = 0.
    D_loss_fake = 0.
    D_loss_grad = 0.
    for gpu in range(submit_config.num_gpus):
        print('build graph on gpu %s' % str(gpu))
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
            E_gpu = E if gpu == 0 else E.clone(E.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
            G_gpu = Gs if gpu == 0 else Gs.clone(Gs.name + '_shadow')
            perceptual_model = PerceptualModel(img_size=[E_loss_args.perceptual_img_size, E_loss_args.perceptual_img_size], multi_layers=False)
            real_gpu = process_reals(real_split[gpu], mirror_augment, drange_data, drange_net)
            with tf.name_scope('E_loss'), tf.control_dependencies(None):
                E_loss, recon_loss, adv_loss = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, perceptual_model=perceptual_model, reals=real_gpu, **E_loss_args)
                E_loss_rec += recon_loss
                E_loss_adv += adv_loss
            with tf.name_scope('D_loss'), tf.control_dependencies(None):
                D_loss, loss_fake, loss_real, loss_gp = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, reals=real_gpu, **D_loss_args)
                D_loss_real += loss_real
                D_loss_fake += loss_fake
                D_loss_grad += loss_gp
            with tf.control_dependencies([add_global0]):
                E_opt.register_gradients(E_loss, E_gpu.trainables)
                D_opt.register_gradients(D_loss, D_gpu.trainables)

    E_loss_rec /= submit_config.num_gpus
    E_loss_adv /= submit_config.num_gpus
    D_loss_real /= submit_config.num_gpus
    D_loss_fake /= submit_config.num_gpus
    D_loss_grad /= submit_config.num_gpus

    E_train_op = E_opt.apply_updates()
    D_train_op = D_opt.apply_updates()

    print('building testing graph...')
    fake_X_val = test(E, Gs, real_test, submit_config)

    sess = tf.get_default_session()

    print('Getting training data...')
    image_batch_train = get_train_data(sess, data_dir=dataset_args.data_train, submit_config=submit_config, mode='train')
    image_batch_test = get_train_data(sess, data_dir=dataset_args.data_test, submit_config=submit_config, mode='test')

    summary_log = tf.summary.FileWriter(config.GDRIVE_PATH)

    cur_nimg = start * submit_config.batch_size
    cur_tick = 0
    tick_start_nimg = cur_nimg
    start_time = time.time()

    init_pascal = tf.initialize_variables(
        [global_step0],
        name='init_pascal'
    )
    sess.run(init_pascal)
    
    print('Optimization starts!!!')
    
    
    for it in range(start, max_iters):

        batch_images = sess.run(image_batch_train)
        feed_dict_1 = {real_train: batch_images}
        _, recon_, adv_ = sess.run([E_train_op, E_loss_rec, E_loss_adv], feed_dict_1)
        _, d_r_, d_f_, d_g_ = sess.run([D_train_op, D_loss_real, D_loss_fake, D_loss_grad], feed_dict_1)

        cur_nimg += submit_config.batch_size

        if it % 50 == 0:
            print('Iter: %06d recon_loss: %-6.4f adv_loss: %-6.4f d_r_loss: %-6.4f d_f_loss: %-6.4f d_reg: %-6.4f time:%-12s' % (
                it, recon_, adv_, d_r_, d_f_, d_g_, dnnlib.util.format_time(time.time() - start_time)))
            sys.stdout.flush()
            tflib.autosummary.save_summaries(summary_log, it)
            
            
            
            
        if it % 500 == 0:
            batch_images_test = sess.run(image_batch_test)
            batch_images_test = misc.adjust_dynamic_range(batch_images_test.astype(np.float32), [0, 255], [-1., 1.])
            samples2 = sess.run(fake_X_val, feed_dict={real_test: batch_images_test})
            orin_recon = np.concatenate([batch_images_test, samples2], axis=0)
            orin_recon = adjust_pixel_range(orin_recon)
            orin_recon = fuse_images(orin_recon, row=2, col=submit_config.batch_size_test)
            # save image results during training, first row is original images and the second row is reconstructed images
            save_image('%s/iter_%08d.png' % (submit_config.run_dir, cur_nimg), orin_recon)

            # save image to gdrive
            img_path = os.path.join(config.GDRIVE_PATH, 'images', ('iter_%08d.png' % (cur_nimg)))
            save_image(img_path, orin_recon)

        if cur_nimg >= tick_start_nimg + 65000:
            cur_tick += 1
            tick_start_nimg = cur_nimg



            if cur_tick % network_snapshot_ticks == 0:
                pkl = os.path.join(submit_config.run_dir, 'network-snapshot-%08d.pkl' % (cur_nimg))
                misc.save_pkl((E, G, D, Gs), pkl)
                
                # save network snapshot to gdrive
                pkl_drive = os.path.join(config.GDRIVE_PATH, 'snapshots', 'network-snapshot-%08d.pkl' % (cur_nimg))
                misc.save_pkl((E, G, D, Gs), pkl_drive)

    misc.save_pkl((E, G, D, Gs), os.path.join(submit_config.run_dir, 'network-final.pkl'))
    summary_log.close()
    def synthesize(self,
                   num,
                   z=None,
                   html_name=None,
                   save_raw_synthesis=False):
        """Synthesizes images.

        Args:
            num: Number of images to synthesize.
            z: Latent codes used for generation. If not specified, this function
                will sample latent codes randomly. (default: None)
            html_name: Name of the output html page for visualization. If not
                specified, no visualization page will be saved. (default: None)
            save_raw_synthesis: Whether to save raw synthesis on the disk.
                (default: False)
        """
        if not html_name and not save_raw_synthesis:
            return

        self.set_mode('val')

        temp_dir = os.path.join(self.work_dir, 'synthesize_results')
        os.makedirs(temp_dir, exist_ok=True)

        if z is not None:
            assert isinstance(z, np.ndarray)
            assert z.ndim == 2 and z.shape[1] == self.z_space_dim
            num = min(num, z.shape[0])
            z = torch.from_numpy(z).type(torch.FloatTensor)
        if not num:
            return
        # TODO: Use same z during the entire training process.

        self.logger.init_pbar()
        task1 = self.logger.add_pbar_task('Synthesize', total=num)

        indices = list(range(self.rank, num, self.world_size))
        for batch_idx in range(0, len(indices), self.val_batch_size):
            sub_indices = indices[batch_idx:batch_idx + self.val_batch_size]
            batch_size = len(sub_indices)
            if z is None:
                code = torch.randn(batch_size, self.z_space_dim).cuda()
            else:
                code = z[sub_indices].cuda()
            with torch.no_grad():
                if 'generator_smooth' in self.models:
                    G = self.models['generator_smooth']
                else:
                    G = self.models['generator']
                images = G(code, **self.G_kwargs_val)['image']
                images = self.postprocess(images)
            for sub_idx, image in zip(sub_indices, images):
                save_image(os.path.join(temp_dir, f'{sub_idx:06d}.jpg'), image)
            self.logger.update_pbar(task1, batch_size * self.world_size)

        dist.barrier()
        if self.rank != 0:
            return

        if html_name:
            task2 = self.logger.add_pbar_task('Visualize', total=num)
            html = HtmlPageVisualizer(grid_size=num)
            for image_idx in range(num):
                image = load_image(
                    os.path.join(temp_dir, f'{image_idx:06d}.jpg'))
                row_idx, col_idx = divmod(image_idx, html.num_cols)
                html.set_cell(row_idx,
                              col_idx,
                              image=image,
                              text=f'Sample {image_idx:06d}')
                self.logger.update_pbar(task2, 1)
            html.save(os.path.join(self.work_dir, html_name))
        if not save_raw_synthesis:
            shutil.rmtree(temp_dir)

        self.logger.close_pbar()
Exemple #7
0
def training_loop(
                  submit_config,
                  Encoder_args            = {},
                  E_opt_args              = {},
                  D_opt_args              = {},
                  E_loss_args             = EasyDict(),
                  D_loss_args             = {},
                  lr_args                 = EasyDict(),
                  tf_config               = {},
                  dataset_args            = EasyDict(),
                  decoder_pkl             = EasyDict(),
                  inversion_pkl           = EasyDict(),
                  drange_data             = [0, 255],
                  drange_net              = [-1,1],   # Dynamic range used when feeding image data to the networks.
                  mirror_augment          = False,
                  resume_run_id           = config.ENCODER_PICKLE_DIR,     # Run ID or network pkl to resume training from, None = start from scratch.
                  resume_snapshot         = None,     # Snapshot index to resume training from, None = autodetect.
                  image_snapshot_ticks    = 1,        # How often to export image snapshots?
                  network_snapshot_ticks  = 4,       # How often to export network snapshots?
                  max_iters               = 150000):

    tflib.init_tf(tf_config)

    with tf.name_scope('input'):
        placeholder_real_portraits_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_portraits_train')
        placeholder_real_landmarks_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_landmarks_train')
        placeholder_real_shuffled_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_shuffled_train')
        placeholder_landmarks_shuffled_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='placeholder_landmarks_shuffled_train')


        placeholder_real_portraits_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_portraits_test')
        placeholder_real_landmarks_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_landmarks_test')
        placeholder_real_shuffled_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_shuffled_test')
        placeholder_real_landmarks_shuffled_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='placeholder_real_landmarks_shuffled_test')

        real_split_landmarks = tf.split(placeholder_real_landmarks_train, num_or_size_splits=submit_config.num_gpus, axis=0)
        real_split_portraits = tf.split(placeholder_real_portraits_train, num_or_size_splits=submit_config.num_gpus, axis=0)
        real_split_shuffled = tf.split(placeholder_real_shuffled_train, num_or_size_splits=submit_config.num_gpus, axis=0)
        real_split_lm_shuffled = tf.split(placeholder_landmarks_shuffled_train, num_or_size_splits=submit_config.num_gpus, axis=0)
        
        placeholder_training_flag = tf.placeholder(tf.string, name='placeholder_training_flag')

    with tf.device('/gpu:0'):
        if resume_run_id is not None:
            network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot)
            print('Loading networks from "%s"...' % network_pkl)
            E, G, D, Gs = misc.load_pkl(network_pkl)
            start = int(network_pkl.split('-')[-1].split('.')[0]) // submit_config.batch_size
            print('Start: ', start)
        else:
            print('Constructing networks...')
            G, _, Gs = misc.load_pkl(decoder_pkl.decoder_pkl) # don't use pre-trained discriminator!
            num_layers = Gs.components.synthesis.input_shape[1]

            # here we add a new discriminator!
            D = tflib.Network('D',  # name of the network how we call it
                              num_channels=3, resolution=128, label_size=0,  #some needed for this build function
                              func_name="training.networks_stylegan.D_basic") # function of that network. more was not passed in d_args!
                              # input is not passed here (just construction - note that we do not call the actual function!). Instead, network will inspect build function and require it for the get_output_for function.
            print("Created new Discriminator!")

            E = tflib.Network('E', size=submit_config.image_size, filter=64, filter_max=1024, num_layers=num_layers, phase=True, **Encoder_args)
            start = 0
        Inv, _, _, _ = misc.load_pkl(inversion_pkl.inversion_pkl)

    E.print_layers(); Gs.print_layers(); D.print_layers()

    global_step0 = tf.Variable(start, trainable=False, name='learning_rate_step')
    learning_rate = tf.train.exponential_decay(lr_args.learning_rate, global_step0, lr_args.decay_step,
                                               lr_args.decay_rate, staircase=lr_args.stair)
    add_global0 = global_step0.assign_add(1)

    E_opt = tflib.Optimizer(name='TrainE', learning_rate=learning_rate, **E_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', learning_rate=learning_rate, **D_opt_args)

    E_loss_rec = 0.
    E_loss_adv = 0.
    D_loss_real = 0.
    D_loss_fake = 0.
    D_loss_grad = 0.
    for gpu in range(submit_config.num_gpus):
        print('build graph on gpu %s' % str(gpu))
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
            E_gpu = E if gpu == 0 else E.clone(E.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
            G_gpu = Gs if gpu == 0 else Gs.clone(Gs.name + '_shadow')
            Inv_gpu = Inv if gpu == 0 else Inv.clone(Inv.name + '_shadow')
            perceptual_model = PerceptualModel(img_size=[E_loss_args.perceptual_img_size, E_loss_args.perceptual_img_size], multi_layers=False)
            real_portraits_gpu = process_reals(real_split_portraits[gpu], mirror_augment, drange_data, drange_net)
            shuffled_portraits_gpu = process_reals(real_split_shuffled[gpu], mirror_augment, drange_data, drange_net)
            real_landmarks_gpu = process_reals(real_split_landmarks[gpu], mirror_augment, drange_data, drange_net)
            shuffled_landmarks_gpu = process_reals(real_split_lm_shuffled[gpu], mirror_augment, drange_data, drange_net)
            with tf.name_scope('E_loss'), tf.control_dependencies(None):
                E_loss, recon_loss, adv_loss = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, Inv=Inv_gpu, perceptual_model=perceptual_model, real_portraits=real_portraits_gpu, shuffled_portraits=shuffled_portraits_gpu, real_landmarks=real_landmarks_gpu, shuffled_landmarks=shuffled_landmarks_gpu, training_flag=placeholder_training_flag, **E_loss_args)
                E_loss_rec += recon_loss
                E_loss_adv += adv_loss
            with tf.name_scope('D_loss'), tf.control_dependencies(None):
                D_loss, loss_fake, loss_real, loss_gp = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, Inv=Inv_gpu, real_portraits=real_portraits_gpu, shuffled_portraits=shuffled_portraits_gpu, real_landmarks=real_landmarks_gpu, training_flag=placeholder_training_flag, **D_loss_args) # change signature in ...
                D_loss_real += loss_real
                D_loss_fake += loss_fake
                D_loss_grad += loss_gp
            with tf.control_dependencies([add_global0]):
                E_opt.register_gradients(E_loss, E_gpu.trainables)
                D_opt.register_gradients(D_loss, D_gpu.trainables)

    E_loss_rec /= submit_config.num_gpus
    E_loss_adv /= submit_config.num_gpus
    D_loss_real /= submit_config.num_gpus
    D_loss_fake /= submit_config.num_gpus
    D_loss_grad /= submit_config.num_gpus

    E_train_op = E_opt.apply_updates()
    D_train_op = D_opt.apply_updates()

    print('building testing graph...')
    fake_X_val = test(E, Gs, Inv, placeholder_real_portraits_test, placeholder_real_landmarks_test, placeholder_real_shuffled_test, submit_config)
    inv_X_val = test_inversion(E, Gs, Inv, placeholder_real_portraits_test, placeholder_real_landmarks_test, placeholder_real_shuffled_test, submit_config)
    
    #sampled_portraits_val = sample_random_portraits(Gs, submit_config.batch_size)
    #sampled_portraits_val_test = sample_random_portraits(Gs, submit_config.batch_size_test)

    sess = tf.get_default_session()

    print('Getting training data...')
    # x_batch is a batch of (2, ..., ..., ...) records!
    stack_batch_train = get_train_data(sess, data_dir=dataset_args.data_train, submit_config=submit_config, mode='train')
    stack_batch_test = get_train_data(sess, data_dir=dataset_args.data_test, submit_config=submit_config, mode='test')
    
    stack_batch_train_secondary = get_train_data(sess, data_dir=dataset_args.data_train, submit_config=submit_config, mode='train_secondary')
    stack_batch_test_secondary = get_train_data(sess, data_dir=dataset_args.data_test, submit_config=submit_config, mode='test_secondary')

    summary_log = tf.summary.FileWriter(config.getGdrivePath())

    cur_nimg = start * submit_config.batch_size
    cur_tick = 0
    tick_start_nimg = cur_nimg
    start_time = time.time()

    init_fix = tf.initialize_variables(
        [global_step0],
        name='init_fix'
    )
    sess.run(init_fix)
    
    print('Optimization starts!!!')
    
    
    # here is the actual training loop: all iterations
    for it in range(start, max_iters):
        batch_stacks = sess.run(stack_batch_train)
        batch_portraits = batch_stacks[:,0,:,:,:]
        batch_landmarks = batch_stacks[:,1,:,:,:]
        
        batch_stacks_secondary = sess.run(stack_batch_train_secondary)
        batch_shuffled = batch_stacks_secondary[:,0,:,:,:]
        batch_lm_shuffled = batch_stacks_secondary[:,1,:,:,:]
        
        
        training_flag = "pose"
        
        feed_dict_1 = {placeholder_real_portraits_train: batch_portraits, placeholder_real_landmarks_train: batch_landmarks, placeholder_real_shuffled_train:batch_shuffled, placeholder_landmarks_shuffled_train:batch_lm_shuffled, placeholder_training_flag: training_flag}
        # here we query these encoder- and discriminator losses. as input we provide: batch_stacks = batch of images + landmarks.
        _, recon_, adv_ = sess.run([E_train_op, E_loss_rec, E_loss_adv], feed_dict_1)
        _, d_r_, d_f_, d_g_= sess.run([D_train_op, D_loss_real, D_loss_fake, D_loss_grad], feed_dict_1)

        cur_nimg += submit_config.batch_size

        if it % 50 == 0:
            print('Iter: %06d recon_loss: %-6.4f adv_loss: %-6.4f d_r_loss: %-6.4f d_f_loss: %-6.4f d_reg: %-6.4f time:%-12s' % (
                it, recon_, adv_, d_r_, d_f_, d_g_, dnnlib.util.format_time(time.time() - start_time)))
            sys.stdout.flush()
            tflib.autosummary.save_summaries(summary_log, it)
            
            
            
            
        if it % 500 == 0:
            batch_stacks_test = sess.run(stack_batch_test)
            batch_portraits_test = batch_stacks_test[:,0,:,:,:]
            batch_landmarks_test = batch_stacks_test[:,1,:,:,:]
            
            batch_stacks_test_secondary = sess.run(stack_batch_test_secondary)
            batch_shuffled_test = batch_stacks_test_secondary[:,0,:,:,:]
            batch_shuffled_lm_test = batch_stacks_test_secondary[:,1,:,:,:]
            
            
            batch_portraits_test = misc.adjust_dynamic_range(batch_portraits_test.astype(np.float32), [0, 255], [-1., 1.])
            batch_landmarks_test = misc.adjust_dynamic_range(batch_landmarks_test.astype(np.float32), [0, 255], [-1., 1.])
            batch_shuffled_test = misc.adjust_dynamic_range(batch_shuffled_test.astype(np.float32), [0, 255], [-1., 1.])
            batch_shuffled_lm_test = misc.adjust_dynamic_range(batch_shuffled_lm_test.astype(np.float32), [0, 255], [-1., 1.])

            # first: input + target landmarks = manipulated image
            samples_manipulated = sess.run(fake_X_val, feed_dict={placeholder_real_portraits_test: batch_portraits_test, placeholder_real_landmarks_test: batch_shuffled_lm_test})

            # 2nd: manipulated + original landmarks
            samples_reconstructed = sess.run(fake_X_val, feed_dict={placeholder_real_portraits_test: samples_manipulated, placeholder_real_landmarks_test: batch_landmarks_test})

            # also: show direct reconstruction
            samples_direct_rec = sess.run(fake_X_val, feed_dict={placeholder_real_portraits_test: batch_portraits_test, placeholder_real_landmarks_test: batch_landmarks_test})

            # show results of the inverison
            portraits_inverted = sess.run(inv_X_val, feed_dict={placeholder_real_portraits_test: batch_portraits_test, placeholder_real_landmarks_test: batch_landmarks_test})

            # show: original portrait, original landmark, diret reconstruction, fake landmark, manipulated, rec.
            debug_img = np.concatenate([
                    batch_landmarks_test, # original landmarks
                    batch_portraits_test, # original portraits,
                    samples_direct_rec, # direct
                    batch_shuffled_lm_test, # shuffled landmarks
                    samples_manipulated, # manipulated images
                    samples_reconstructed,
                    portraits_inverted# cycle reconstructed images
                ], axis=0)

            debug_img = adjust_pixel_range(debug_img)
            debug_img = fuse_images(debug_img, row=6, col=submit_config.batch_size_test)
            # save image results during training, first row is original images and the second row is reconstructed images
            save_image('%s/iter_%08d.png' % (submit_config.run_dir, cur_nimg), debug_img)

            # save image to gdrive
            img_path = os.path.join(config.getGdrivePath(), 'images', ('iter_%08d.png' % (cur_nimg)))
            save_image(img_path, debug_img)

        if cur_nimg >= tick_start_nimg + 65000:
            cur_tick += 1
            tick_start_nimg = cur_nimg



            if cur_tick % network_snapshot_ticks == 0:
                pkl = os.path.join(submit_config.run_dir, 'network-snapshot-%08d.pkl' % (cur_nimg))
                misc.save_pkl((E, G, D, Gs), pkl)
                
                # save network snapshot to gdrive
                pkl_drive = os.path.join(config.getGdrivePath(), 'snapshots', 'network-snapshot-%08d.pkl' % (cur_nimg))
                misc.save_pkl((E, G, D, Gs), pkl_drive)

    misc.save_pkl((E, G, D, Gs), os.path.join(submit_config.run_dir, 'network-final.pkl'))
    summary_log.close()
Exemple #8
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.image_list)
    image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
    output_dir = args.output_dir or f'results/ghfeat/{image_list_name}'
    logger = setup_logger(output_dir, 'extract_feature.log',
                          'inversion_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    G_args = EasyDict(func_name='training.networks_stylegan.G_synthesis')
    G_style_mod = tflib.Network('G_StyleMod',
                                resolution=image_size,
                                label_size=0,
                                **G_args)
    Gs_vars_pairs = {
        name: tflib.run(val)
        for name, val in Gs.components.synthesis.vars.items()
    }
    for g_name, g_val in G_style_mod.vars.items():
        tflib.set_vars({g_val: Gs_vars_pairs[g_name]})

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    ghfeat = E.get_output_for(x, is_training=False)
    x_rec = G_style_mod.get_output_for(ghfeat, randomize_noise=False)

    # Load image list.
    logger.info(f'Loading image list.')
    image_list = []
    with open(args.image_list, 'r') as f:
        for line in f:
            image_list.append(line.strip())

    # Extract GH-Feat from images.
    logger.info(f'Start feature extraction.')
    headers = ['Name', 'Original Image', 'Encoder Output']
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=len(image_list),
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    names = ['' for _ in range(args.batch_size)]
    features = []
    for img_idx in tqdm(range(0, len(image_list), args.batch_size),
                        leave=False):
        # Load inputs.
        batch = image_list[img_idx:img_idx + args.batch_size]
        for i, image_path in enumerate(batch):
            image = resize_image(load_image(image_path),
                                 (image_size, image_size))
            images[i] = np.transpose(image, [2, 0, 1])
            names[i] = os.path.splitext(os.path.basename(image_path))[0]
        inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
        # Run encoder.
        outputs = sess.run([ghfeat, x_rec], {x: inputs})
        features.append(outputs[0][0:len(batch)])
        outputs[1] = adjust_pixel_range(outputs[1])
        for i, _ in enumerate(batch):
            image = np.transpose(images[i], [1, 2, 0])
            save_image(f'{output_dir}/{names[i]}_ori.png', image)
            save_image(f'{output_dir}/{names[i]}_enc.png', outputs[1][i])
            visualizer.set_cell(i + img_idx, 0, text=names[i])
            visualizer.set_cell(i + img_idx, 1, image=image)
            visualizer.set_cell(i + img_idx, 2, image=outputs[1][i])

    # Save results.
    os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
    np.save(f'{output_dir}/ghfeat.npy', np.concatenate(features, axis=0))
    visualizer.save(f'{output_dir}/reconstruction.html')
    def _evaluate(self, Gs, E, Inv, num_gpus):

        loaded_imgs = load_test_images(self.img_folder)
        loaded_landmarks = load_test_images(self.lm_folder)
        loaded_keypoints = load_keypoint_vectors(self.kp_folder)
        minibatch_size = num_gpus * self.minibatch_per_gpu







        ##
        # Set up graph
        ##


        # Get input size.
        image_size = Inv.input_shape[2]
        assert image_size == Inv.input_shape[3]
        input_shape = Inv.input_shape
        input_shape[0] = self.minibatch_per_gpu
        latent_shape = Gs.components.synthesis.input_shape
        latent_shape[0] = self.minibatch_per_gpu

        # Build graph.
        print(f'Building graph.')
        x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
        x_lm = tf.placeholder(tf.float32, shape=input_shape, name='some_landmark')
        x_kp = tf.placeholder(tf.float32, shape=[self.minibatch_per_gpu, 136], name='some_keypoints')

        if self.model_type == "rignet":
            w_enc_1 = Inv.get_output_for(x, phase=False)
            wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
            w_enc = E.get_output_for(wp_enc_1, x_lm, phase=False)
        elif self.model_type == "keypoints":
            w_enc_1 = Inv.get_output_for(x, phase=False)
            wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
            w_enc = E.get_output_for(wp_enc_1, x_kp, phase=False)
        else:
            w_enc = E.get_output_for(x, x_lm, phase=False)
        wp_enc = tf.reshape(w_enc, latent_shape)

        manipulated_images = Gs.components.synthesis.get_output_for(wp_enc, randomize_noise=False)
        manipulated_images = tflib.convert_images_to_uint8(manipulated_images)




        def get_landmark_row(lm, kp, img_list):
            displayed_imgs = [lm]

            # the np variables we'll build to feed to graph!
            batch_images = np.zeros(input_shape, np.uint8)
            batch_lms = np.zeros(input_shape, np.uint8)
            batch_kps = np.zeros([self.minibatch_per_gpu, 136], np.float32)

            for img_idx in tqdm(range(0, len(img_list), self.minibatch_per_gpu), leave=False):
                batch = img_list[img_idx:img_idx + self.minibatch_per_gpu]
                for i, image in enumerate(batch):
                    batch_images[i] = np.transpose(image, [2, 0, 1])
                    batch_lms[i] = np.transpose(lm, [2, 0, 1])
                    batch_kps[i] = kp.flatten()

                inputs = batch_images.astype(np.float32) / 255 * 2.0 - 1.0
                inputs_lm = batch_lms.astype(np.float32) / 255 * 2.0 - 1.0
                input_kp = batch_kps

                # Run encoder.
                outputs = tflib.run(manipulated_images, {x: inputs, x_lm: inputs_lm, x_kp: input_kp})
                outputs = adjust_pixel_range(outputs, min_val=0, max_val=255) # 16 x 128 x 128 x 3
                for i, _ in enumerate(batch):
                    displayed_imgs.append(outputs[i])

            return displayed_imgs


        header = [(np.ones([image_size,image_size, 3])*255).astype(np.uint8)] # start with empty square for landmark slot
        header.extend(loaded_imgs)

        results = [header]
        print("rsultss", len(results))
        print("resuls[0]", len(results[0]))
        idx = 0
        for sample_landmark in loaded_landmarks:
            current_result = get_landmark_row(sample_landmark, loaded_keypoints[idx], loaded_imgs)
            results.append(current_result)
            idx += 1




        def get_gallery_array(img_lists):
            stacks = []
            for img_list in img_lists:
                stack = np.concatenate(img_list, axis=1)
                stacks.append(stack)

            total_stack = np.concatenate(stacks, axis=0)
            return total_stack


        arr = get_gallery_array(results)
        path = os.path.join(config.EVALUATION_DIR, self.name + "_" + convert_pickle_path_to_name(self._network_pkl) + ".png")
        save_image(path, arr)


        def display_image_in_actual_size(img_arr, title):

            dpi = 80
            height, width, depth = img_arr.shape

            # What size does the figure need to be in inches to fit the image?
            figsize = width / float(dpi), height / float(dpi)

            # Create a figure of the right size with one axes that takes up the full figure
            fig = plt.figure(figsize=figsize)
            ax = fig.add_axes([0, 0, 1, 1])

            # Hide spines, ticks, etc.
            ax.axis('off')

            # Display the image.
            ax.imshow(img_arr, cmap='gray')
            fig.suptitle("Model-Path: \"{}\"".format(title), fontsize=12, y=0)
            plt.show()


        display_image_in_actual_size(arr, self._network_pkl)
Exemple #10
0
def main():
    """Main function."""
    args = parse_args()
   
    if not args.save_raw_synthesis and not args.generate_html:
        return

    # Parse model configuration.
    if args.model_name not in MODEL_ZOO:
        raise SystemExit(f'Model `{args.model_name}` is not registered in '
                         f'`models/model_zoo.py`!')
    model_config = MODEL_ZOO[args.model_name].copy()
    url = model_config.pop('url')  # URL to download model if needed.

    # Get work directory and job name.
    if args.save_dir:
        work_dir = args.save_dir
    else:
        work_dir = os.path.join('work_dirs', 'synthesis')
    os.makedirs(work_dir, exist_ok=True)
    job_name = f'{args.model_name}_{args.num}'
    if args.save_raw_synthesis:
        os.makedirs(os.path.join(work_dir, job_name), exist_ok=True)

    # Build generation and get synthesis kwargs.
    print(f'Building generator for model `{args.model_name}` ...')
    generator = build_generator(**model_config)
    synthesis_kwargs = dict(trunc_psi=args.trunc_psi,
                            trunc_layers=args.trunc_layers,
                            randomize_noise=args.randomize_noise)
    print(f'Finish building generator.')

    # Load pre-trained weights.
    os.makedirs('checkpoints', exist_ok=True)
    checkpoint_path = os.path.join('checkpoints', args.model_name + '.pth')
    print(f'Loading checkpoint from `{checkpoint_path}` ...')
    if not os.path.exists(checkpoint_path):
        print(f'  Downloading checkpoint from `{url}` ...')
        subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])
        print(f'  Finish downloading checkpoint.')
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    if 'generator_smooth' in checkpoint:
        generator.load_state_dict(checkpoint['generator_smooth'])
    else:
        generator.load_state_dict(checkpoint['generator'])
    
    code_dim = generator.z_space_dim
    # generator = generator.cuda()
    device_ids = [int(i) for i in args.device_ids.split(',')]

    generator = torch.nn.DataParallel(generator, device_ids=device_ids).cuda()

    generator.eval()
    print(f'Finish loading checkpoint.')

    # Set random seed.
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # load gt images:
    gt_imgs = load_data().cuda()
    print (gt_imgs.shape)

    total_num = gt_imgs.shape[0]
    # define the code
    code = np.zeros( ( total_num, code_dim ), dtype = np.float32)

    l1_loss = torch.nn.L1Loss().cuda()

   

    for batch_idx in tqdm(range(0, total_num, args.batch_size)): 
        frm_idx_start = batch_idx
        frm_idx_end = np.min( [ total_num, frm_idx_start + args.batch_size ] )
        sample_num = frm_idx_end - frm_idx_start

        print( 'Optim lightingcode based on pca batch [%d/%d], frame [%d/%d]'
               % (batch_idx/args.batch_size + 1, total_num, frm_idx_start, frm_idx_end) )

        # get code batch
        batch_code = [ ]
        for sample_id in range( sample_num  ):
            frm_idx = frm_idx_start + sample_id
            batch_code.append( code[ frm_idx ] )
        batch_code = np.asarray(batch_code)
        batch_code = torch.tensor( batch_code, dtype = torch.float32 ).cuda()
        batch_code.requires_grad = True

        # get gt image batch
        batch_gt_img =gt_imgs[frm_idx_start : frm_idx_end]

        # Define the optimizer
        code_optimizer = torch.optim.Adam( [
            { 'params': [batch_code], 'lr': args.lr }
        ] )

        # optimize
        for iter_id in range( args. max_iter_num ):
            images = generator(batch_code, **synthesis_kwargs)['image']
            # SIZE: (BATCH_SIZE , 3,1024,1024) 

            # calculate loss:
            print (batch_gt_img.max(),batch_gt_img.min(),'========')
            print (images.max(),images.min())

            global_pix_loss = (batch_gt_img  - images).abs().mean()
            code_reg_loss = (batch_code ** 2).mean()
            loss = global_pix_loss + code_reg_loss * 0.01

            # Optimize
            code_optimizer.zero_grad()
            loss.backward()
            code_optimizer.step()

            # Print errors
            if iter_id == 0 or ( iter_id + 1 ) % 100 == 0:
                print(  ' iter [%d/%d]: global %f, code_reg %f'
                   % (  iter_id + 1, args.max_iter_num ,  global_pix_loss.item(),
                       code_reg_loss.item()) )# , end = '\r' )

                # Reduce the lr
                code_optimizer.param_groups[ 0 ][ 'lr' ] *= 0.5
                print( ' Reduce learning rate to %f' % (code_optimizer.param_groups[ 0 ][ 'lr' ] ) )

        # Set the data
        n_code = batch_code.detach().cpu().numpy()
        for sample_id in range( sample_num ):
            frm_idx = frm_idx_start + sample_id
            code[ frm_idx ] = n_code[ sample_id ]


    # Sample and synthesize.
    print(f'Synthesizing {total_num} samples ...')
    indices = list(range(total_num))
    if args.generate_html:
        html = HtmlPageVisualizer(grid_size=total_num)
    for batch_idx in tqdm(range(0, total_num, args.batch_size)):
        sub_indices = indices[batch_idx:batch_idx + args.batch_size]
        print (code.shape)
        t_code = torch.FloatTensor(code[sub_indices]).cuda()
        with torch.no_grad():
            images = generator(t_code, **synthesis_kwargs)['image']
            # images shape [1,3,1024,1024]
            print (images.shape)

            images = postprocess(images)
        for sub_idx, image in zip(sub_indices, images):
            if args.save_raw_synthesis:
                save_path = os.path.join(
                    work_dir, job_name, f'{sub_idx:06d}.jpg')
                save_image(save_path, image)
            if args.generate_html:
                row_idx, col_idx = divmod(sub_idx, html.num_cols)
                html.set_cell(row_idx, col_idx, image=image,
                              text=f'Sample {sub_idx:06d}')
    if args.generate_html:
        html.save(os.path.join(work_dir, f'{job_name}.html'))
    print(f'Finish synthesizing {total_num} samples.')

     # Sample and ground truth image.
    print(f'Synthesizing {total_num} samples ...')
    indices = list(range(total_num))
    if args.generate_html:
        html = HtmlPageVisualizer(grid_size=total_num)
    for batch_idx in tqdm(range(0, total_num, args.batch_size)):
        sub_indices = indices[batch_idx:batch_idx + args.batch_size]
        with torch.no_grad():
            images = gt_imgs[sub_indices]
            # images shape [1,3,1024,1024]
            print (images.shape)

            images = postprocess(images)
        for sub_idx, image in zip(sub_indices, images):
            if args.save_raw_synthesis:
                save_path = os.path.join(
                    work_dir, job_name, f'{sub_idx:06d}_gt.jpg')
                save_image(save_path, image)
            if args.generate_html:
                row_idx, col_idx = divmod(sub_idx, html.num_cols)
                html.set_cell(row_idx, col_idx, image=image,
                              text=f'Sample {sub_idx:06d}')
    if args.generate_html:
        html.save(os.path.join(work_dir, f'{job_name}_gt.html'))
    print(f'Finish synthesizing {total_num} samples.')
Exemple #11
0
model = create_model(opt)

# training loop
print('### start training !')
for epoch in range(opt.epoch + opt.epoch_decay + 1):
    for iter, data in enumerate(train_loader):
        model.set_variables(data)
        model.optimize_parameters()
        model.sum_epoch_losses()

        if iter % opt.print_iter_freq == 0:
            losses = model.get_current_losses()
            visualizer.print_current_losses(epoch, iter, losses)

            saved_image = model.sample()
            visualizer.save_image(opt, epoch, saved_image)

    if epoch % opt.save_epoch_freq == 0:
        saved_image = model.sample()
        visualizer.save_image(opt, epoch, saved_image)

        model.save_networks(epoch)

    model.update_lr()

    for k, v in model.epoch_losses.items():
        writer.add_scalar(k, v / (iter + 1), epoch)

    visualizer.print_epoch_losses(epoch, iter, model.epoch_losses)
    model.reset_epoch_losses()
Exemple #12
0
def main():
    """Main function."""
    args = parse_args()
    file_name = args.output_file
    work_dir = args.output_dir or f'{args.model_name}_synthesis'
    logger_name = f'{args.model_name}_synthesis_logger'
    logger = setup_logger(work_dir, args.logfile_name, logger_name)

    logger.info(f'Initializing generator.')
    model = build_generator(args.model_name, logger=logger)

    logger.info(f'Preparing latent codes.')
    if os.path.isfile(args.latent_codes_path):
        logger.info(f'  Load latent codes from `{args.latent_codes_path}`.')
        latent_codes = np.load(args.latent_codes_path)
        latent_codes = model.preprocess(
            latent_codes=latent_codes,
            latent_space_type=args.latent_space_type)
    else:
        if args.num <= 0:
            raise ValueError(
                f'Argument `num` should be specified as a positive '
                f'number since the latent code path '
                f'`{args.latent_codes_path}` does not exist!')
        logger.info(f'  Sample latent codes randomly.')
        latent_codes = model.easy_sample(
            num=args.num, latent_space_type=args.latent_space_type)
    total_num = latent_codes.shape[0]

    if args.generate_prediction:
        logger.info(f'Initializing predictor.')
        predictor = build_predictor(args.predictor_name)

    if args.generate_html:
        viz_size = None if args.viz_size == 0 else args.viz_size
        visualizer = HtmlPageVisualizer(num_rows=args.html_row,
                                        num_cols=args.html_col,
                                        grid_size=total_num,
                                        viz_size=viz_size)

    logger.info(f'Generating {total_num} samples.')
    results = defaultdict(list)
    predictions = defaultdict(list)
    pbar = tqdm(total=total_num, leave=False)
    for inputs in model.get_batch_inputs(latent_codes):
        outputs = model.easy_synthesize(
            latent_codes=inputs,
            latent_space_type=args.latent_space_type,
            generate_style=args.generate_style,
            generate_image=not args.skip_image)
        for key, val in outputs.items():
            if key == 'image':
                if args.generate_prediction:
                    pred_outputs = predictor.easy_predict(val)
                    for pred_key, pred_val in pred_outputs.items():
                        predictions[pred_key].append(pred_val)
                for image in val:
                    if args.save_raw_synthesis:
                        dest = os.path.join(work_dir, f'{pbar.n:06d}.jpg')
                        if file_name != "":
                            dest = os.path.join(work_dir, file_name)
                        print('saving image to ', dest)
                        save_image(dest, image)
                    if args.generate_html:
                        row_idx = pbar.n // visualizer.num_cols
                        col_idx = pbar.n % visualizer.num_cols
                        visualizer.set_cell(row_idx, col_idx, image=image)
                    pbar.update(1)
            else:
                results[key].append(val)
        if 'image' not in outputs:
            pbar.update(inputs.shape[0])
    pbar.close()

    logger.info(f'Saving results.')
    if args.generate_html:
        visualizer.save(os.path.join(work_dir, args.html_name))
    for key, val in results.items():
        np.save(os.path.join(work_dir, f'{key}.npy'),
                np.concatenate(val, axis=0))
    if predictions:
        if args.predictor_name == 'scene':
            # Categories
            categories = np.concatenate(predictions['category'], axis=0)
            detailed_categories = {
                'score': categories,
                'name_to_idx': predictor.category_name_to_idx,
                'idx_to_name': predictor.category_idx_to_name,
            }
            np.save(os.path.join(work_dir, 'category.npy'),
                    detailed_categories)
            # Attributes
            attributes = np.concatenate(predictions['attribute'], axis=0)
            detailed_attributes = {
                'score': attributes,
                'name_to_idx': predictor.attribute_name_to_idx,
                'idx_to_name': predictor.attribute_idx_to_name,
            }
            np.save(os.path.join(work_dir, 'attribute.npy'),
                    detailed_attributes)
        else:
            for key, val in predictions.items():
                np.save(os.path.join(work_dir, f'{key}.npy'),
                        np.concatenate(val, axis=0))
Exemple #13
0
def encode(_target_image, _context_image, _output_dir):
    gpu_id = '0'
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    print(_target_image)
    assert os.path.exists('./static/' + _target_image)
    _output_dir = _output_dir[:-4]
    output_dir = './static/' + _output_dir

    tflib.init_tf({'rnd.np_random_seed': 1000})
    model_path = './styleganinv_face_256.pkl'
    with open(model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    crop_size = 110  # default crop size.
    center_x = 125
    center_y = 145
    crop_x = center_x - crop_size // 2  # default coordinate-X
    crop_y = center_y - crop_size // 2  # default coordinate-Y

    mask = np.zeros((1, image_size, image_size, 3), dtype=np.float32)
    mask[:, crop_y:crop_y + crop_size, crop_x:crop_x + crop_size, :] = 1.0

    # Build graph.
    sess = tf.get_default_session()

    batch_size = 4
    input_shape = E.input_shape
    input_shape[0] = batch_size  # default batch size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_mask = (tf.transpose(x, [0, 2, 3, 1]) + 1) * mask - 1
    x_mask_255 = (x_mask + 1) / 2 * 255

    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = batch_size  # default batch size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_mask = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) * mask - 1
    x_rec_mask_255 = (x_rec_mask + 1) / 2 * 255

    w_enc = E.get_output_for(x, phase=False)
    wp_enc = tf.reshape(w_enc, latent_shape)
    setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    print("Diffusion : Settings for Optimization.")
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_mask_255)
    x_rec_feat = perceptual_model(x_rec_mask_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x_mask - x_rec_mask), axis=[1, 2, 3])

    loss_weight_feat = 5e-5
    learning_rate = 0.01
    loss = loss_pix + loss_weight_feat * loss_feat  # default The perceptual loss scale for optimization. (default 5e-5)
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Invert image
    num_iterations = 100
    num_results = 5
    save_interval = num_iterations // num_results

    images = np.zeros(input_shape, np.uint8)

    print("Load target image.")
    _target_image = './static/' + _target_image
    target_image = resize_image(load_image(_target_image),
                                (image_size, image_size))
    save_image('./' + output_dir + '_tar.png', target_image)

    print("Load context image.")
    context_image = getContextImage(_context_image)
    context_image = resize_image(load_image(context_image),
                                 (image_size, image_size))
    save_image('./' + output_dir + '_cont.png', context_image)

    # Inverting Context Image.
    # context_image = invert(model_path, getContextImage(_context_image), wp, latent_shape)
    save_image('./' + output_dir + '_cont_inv.png', context_image)

    # Create Stitched Image
    # context_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = (
    #     target_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
    # )
    # context_image[crop_y:crop_y + 170, crop_x - 70:crop_x + crop_size + 190] = (
    #     target_image[crop_y:crop_y + 170, crop_x - 70:crop_x + crop_size + 190]
    # )
    print("Cropping Image...")
    # context_image = cropImage(target_image, context_image)

    target_image, rect = cropWithWhite(target_image)
    target_image = fourChannels(target_image)
    target_image = cut(target_image)
    target_image = transBg(target_image)

    context_image = createStitchedImage(context_image, target_image, rect)
    save_image('./' + output_dir + '_sti.png', context_image)
    images[0] = np.transpose(context_image, [2, 0, 1])

    input = images.astype(np.float32) / 255 * 2.0 - 1.0

    # Run encoder
    print("Start Diffusion.")
    sess.run([setter], {x: input})
    output = sess.run([wp, x_rec])
    output[1] = adjust_pixel_range(output[1])

    col_idx = 4
    for step in tqdm(range(1, num_iterations + 1), leave=False):
        sess.run(train_op, {x: input})
        if step == num_iterations or step % save_interval == 0:
            output = sess.run([wp, x_rec])
            output[1] = adjust_pixel_range(output[1])
            if step == num_iterations:
                save_image(f'{output_dir}.png', output[1][0])
            col_idx += 1
    exit()
def training_loop(
        submit_config,
        Encoder_args={},
        D_args={},
        G_args={},
        E_opt_args={},
        D_opt_args={},
        E_loss_args=EasyDict(),
        D_loss_args={},
        lr_args=EasyDict(),
        tf_config={},
        dataset_args=EasyDict(),
        decoder_pkl=EasyDict(),
        drange_data=[0, 255],
        drange_net=[
            -1, 1
        ],  # Dynamic range used when feeding image data to the networks.
        mirror_augment=False,
        filter=64,  # Minimum number of feature maps in any layer.
        filter_max=512,  # Maximum number of feature maps in any layer.
        resume_run_id=None,  # Run ID or network pkl to resume training from, None = start from scratch.
        resume_snapshot=None,  # Snapshot index to resume training from, None = autodetect.
        image_snapshot_ticks=1,  # How often to export image snapshots?
        network_snapshot_ticks=10,  # How often to export network snapshots?
        d_scale=0.1,  # Decide whether to update discriminator.
        pretrained_D=True,  # Whether to use pre trained Discriminator.
        max_iters=150000):

    tflib.init_tf(tf_config)

    with tf.name_scope('Input'):
        real_train = tf.placeholder(tf.float32, [
            submit_config.batch_size, 3, submit_config.image_size,
            submit_config.image_size
        ],
                                    name='real_image_train')
        real_test = tf.placeholder(tf.float32, [
            submit_config.batch_size_test, 3, submit_config.image_size,
            submit_config.image_size
        ],
                                   name='real_image_test')
        real_split = tf.split(real_train,
                              num_or_size_splits=submit_config.num_gpus,
                              axis=0)

    with tf.device('/gpu:0'):
        if resume_run_id is not None:
            network_pkl = misc.locate_network_pkl(resume_run_id,
                                                  resume_snapshot)
            print('Loading networks from "%s"...' % network_pkl)
            E, G, D, Gs = misc.load_pkl(network_pkl)
            G_style_mod = tflib.Network('G_StyleMod',
                                        resolution=submit_config.image_size,
                                        label_size=0,
                                        **G_args)
            start = int(network_pkl.split('-')[-1].split('.')
                        [0]) // submit_config.batch_size
            print('Start: ', start)
        else:
            print('Constructing networks...')
            G, PreD, Gs = misc.load_pkl(decoder_pkl.decoder_pkl)
            num_layers = Gs.components.synthesis.input_shape[1]
            E = tflib.Network('E_gpu0',
                              size=submit_config.image_size,
                              filter=filter,
                              filter_max=filter_max,
                              num_layers=num_layers,
                              is_training=True,
                              num_gpus=submit_config.num_gpus,
                              **Encoder_args)
            OriD = tflib.Network('D_ori',
                                 resolution=submit_config.image_size,
                                 label_size=0,
                                 **D_args)
            G_style_mod = tflib.Network('G_StyleMod',
                                        resolution=submit_config.image_size,
                                        label_size=0,
                                        **G_args)
            if pretrained_D:
                D = PreD
            else:
                D = OriD
            start = 0
        Gs_vars_pairs = {
            name: tflib.run(val)
            for name, val in Gs.components.synthesis.vars.items()
        }
        for g_name, g_val in G_style_mod.vars.items():
            tflib.set_vars({g_val: Gs_vars_pairs[g_name]})

    E.print_layers()
    Gs.print_layers()
    D.print_layers()

    global_step0 = tf.Variable(start,
                               trainable=False,
                               name='learning_rate_step')
    learning_rate = tf.train.exponential_decay(lr_args.learning_rate,
                                               global_step0,
                                               lr_args.decay_step,
                                               lr_args.decay_rate,
                                               staircase=lr_args.stair)
    add_global0 = global_step0.assign_add(1)

    E_opt = tflib.Optimizer(name='TrainE',
                            learning_rate=learning_rate,
                            **E_opt_args)
    if d_scale > 0:
        D_opt = tflib.Optimizer(name='TrainD',
                                learning_rate=learning_rate,
                                **D_opt_args)

    E_loss_rec = 0.
    E_loss_adv = 0.
    D_loss_real = 0.
    D_loss_fake = 0.
    D_loss_grad = 0.
    for gpu in range(submit_config.num_gpus):
        print('Building Graph on GPU %s' % str(gpu))
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
            E_gpu = E if gpu == 0 else E.clone(E.name[:-1] + str(gpu))
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
            G_gpu = G_style_mod if gpu == 0 else G_style_mod.clone(
                G_style_mod.name + '_shadow')
            feature_model = PerceptualModel(img_size=[
                E_loss_args.perceptual_img_size,
                E_loss_args.perceptual_img_size
            ],
                                            multi_layers=False)
            real_gpu = process_reals(real_split[gpu], mirror_augment,
                                     drange_data, drange_net)
            with tf.name_scope('E_loss'), tf.control_dependencies(None):
                E_loss, recon_loss, adv_loss = dnnlib.util.call_func_by_name(
                    E=E_gpu,
                    G=G_gpu,
                    D=D_gpu,
                    feature_model=feature_model,
                    reals=real_gpu,
                    **E_loss_args)
                E_loss_rec += recon_loss
                E_loss_adv += adv_loss
            with tf.name_scope('D_loss'), tf.control_dependencies(None):
                D_loss, loss_fake, loss_real, loss_gp = dnnlib.util.call_func_by_name(
                    E=E_gpu, G=G_gpu, D=D_gpu, reals=real_gpu, **D_loss_args)
                D_loss_real += loss_real
                D_loss_fake += loss_fake
                D_loss_grad += loss_gp
            with tf.control_dependencies([add_global0]):
                E_opt.register_gradients(E_loss, E_gpu.trainables)
                if d_scale > 0:
                    D_opt.register_gradients(D_loss, D_gpu.trainables)

    E_loss_rec /= submit_config.num_gpus
    E_loss_adv /= submit_config.num_gpus
    D_loss_real /= submit_config.num_gpus
    D_loss_fake /= submit_config.num_gpus
    D_loss_grad /= submit_config.num_gpus

    E_train_op = E_opt.apply_updates()
    if d_scale > 0:
        D_train_op = D_opt.apply_updates()

    print('Building testing graph...')
    fake_X_val = test(E, G_style_mod, real_test, submit_config)

    sess = tf.get_default_session()

    print('Getting training data...')
    image_batch_train = get_train_data(sess,
                                       data_dir=dataset_args.data_train,
                                       submit_config=submit_config,
                                       mode='train')
    image_batch_test = get_train_data(sess,
                                      data_dir=dataset_args.data_test,
                                      submit_config=submit_config,
                                      mode='test')

    summary_log = tf.summary.FileWriter(submit_config.run_dir)

    cur_nimg = start * submit_config.batch_size
    cur_tick = 0
    tick_start_nimg = cur_nimg
    start_time = time.time()

    print('Optimization starts!!!')
    for it in range(start, max_iters):

        batch_images = sess.run(image_batch_train)
        feed_dict = {real_train: batch_images}
        _, recon_, adv_, lr = sess.run(
            [E_train_op, E_loss_rec, E_loss_adv, learning_rate], feed_dict)
        if d_scale > 0:
            _, d_r_, d_f_, d_g_ = sess.run(
                [D_train_op, D_loss_real, D_loss_fake, D_loss_grad], feed_dict)

        cur_nimg += submit_config.batch_size

        run_time = time.time() - start_time
        iter_time = run_time / (it - start + 1)
        eta_time = iter_time * (max_iters - it - 1)

        if it % 50 == 0:
            print(
                'Iter: %06d/%d, lr: %-.8f recon_loss: %-6.4f adv_loss: %-6.4f run_time:%-12s eta_time:%-12s'
                % (it, max_iters, lr, recon_, adv_,
                   dnnlib.util.format_time(time.time() - start_time),
                   dnnlib.util.format_time(eta_time)))
            if d_scale > 0:
                print('d_r_loss: %-6.4f d_f_loss: %-6.4f d_reg: %-6.4f ' %
                      (d_r_, d_f_, d_g_))
            sys.stdout.flush()
            tflib.autosummary.save_summaries(summary_log, it)

        if cur_nimg >= tick_start_nimg + 65000:
            cur_tick += 1
            tick_start_nimg = cur_nimg

            if cur_tick % image_snapshot_ticks == 0:
                batch_images_test = sess.run(image_batch_test)
                batch_images_test = misc.adjust_dynamic_range(
                    batch_images_test.astype(np.float32), [0, 255], [-1., 1.])
                recon = sess.run(fake_X_val,
                                 feed_dict={real_test: batch_images_test})
                orin_recon = np.concatenate([batch_images_test, recon], axis=0)
                orin_recon = adjust_pixel_range(orin_recon)
                orin_recon = fuse_images(orin_recon,
                                         row=2,
                                         col=submit_config.batch_size_test)
                # save image results during training, first row is original images and the second row is reconstructed images
                save_image(
                    '%s/iter_%09d.png' % (submit_config.run_dir, cur_nimg),
                    orin_recon)

            if cur_tick % network_snapshot_ticks == 0:
                pkl = os.path.join(submit_config.run_dir,
                                   'network-snapshot-%09d.pkl' % (cur_nimg))
                misc.save_pkl((E, G, D, Gs), pkl)

    misc.save_pkl((E, G, D, Gs),
                  os.path.join(submit_config.run_dir, 'network-final.pkl'))
    summary_log.close()
Exemple #15
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    src_dir = args.src_dir
    src_dir_name = os.path.basename(src_dir.rstrip('/'))
    assert os.path.exists(src_dir)
    assert os.path.exists(f'{src_dir}/image_list.txt')
    assert os.path.exists(f'{src_dir}/inverted_codes.npy')
    dst_dir = args.dst_dir
    dst_dir_name = os.path.basename(dst_dir.rstrip('/'))
    assert os.path.exists(dst_dir)
    assert os.path.exists(f'{dst_dir}/image_list.txt')
    assert os.path.exists(f'{dst_dir}/inverted_codes.npy')
    output_dir = args.output_dir or 'results/interpolation'
    job_name = f'{src_dir_name}_TO_{dst_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        _, _, _, Gs = pickle.load(f)

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
    wp = tf.placeholder(tf.float32, [args.batch_size, num_layers, latent_dim],
                        name='latent_code')
    x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)

    # Load image and codes.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    src_list = []
    with open(f'{src_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{src_dir}/{name}_ori.png')
            src_list.append(name)
    src_codes = np.load(f'{src_dir}/inverted_codes.npy')
    assert src_codes.shape[0] == len(src_list)
    num_src = src_codes.shape[0]
    dst_list = []
    with open(f'{dst_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{dst_dir}/{name}_ori.png')
            dst_list.append(name)
    dst_codes = np.load(f'{dst_dir}/inverted_codes.npy')
    assert dst_codes.shape[0] == len(dst_list)
    num_dst = dst_codes.shape[0]

    # Interpolate images.
    logger.info(f'Start interpolation.')
    step = args.step + 2
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_src * num_dst,
                                    num_cols=step + 2,
                                    viz_size=viz_size)
    visualizer.set_headers(['Source', 'Source Inversion'] +
                           [f'Step {i:02d}' for i in range(1, step - 1)] +
                           ['Target Inversion', 'Target'])

    inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
    for src_idx in tqdm(range(num_src), leave=False):
        src_code = src_codes[src_idx:src_idx + 1]
        src_path = f'{src_dir}/{src_list[src_idx]}_ori.png'
        codes = interpolate(src_codes=np.repeat(src_code, num_dst, axis=0),
                            dst_codes=dst_codes,
                            step=step)
        for dst_idx in tqdm(range(num_dst), leave=False):
            dst_path = f'{dst_dir}/{dst_list[dst_idx]}_ori.png'
            output_images = []
            for idx in range(0, step, args.batch_size):
                batch = codes[dst_idx, idx:idx + args.batch_size]
                inputs[0:len(batch)] = batch
                images = sess.run(x, feed_dict={wp: inputs})
                output_images.append(images[0:len(batch)])
            output_images = adjust_pixel_range(
                np.concatenate(output_images, axis=0))

            row_idx = src_idx * num_dst + dst_idx
            visualizer.set_cell(row_idx, 0, image=load_image(src_path))
            visualizer.set_cell(row_idx, step + 1, image=load_image(dst_path))
            for s, output_image in enumerate(output_images):
                if s == 5 and row_idx == 2:
                    save_image(f'./results/interpolation/005_int.png',
                               output_image)
                visualizer.set_cell(row_idx, s + 1, image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
Exemple #16
0
    def _evaluate(self, Gs, E, Inv, num_gpus):
        minibatch_size = num_gpus * self.minibatch_per_gpu
        inception = misc.load_pkl(config.INCEPTION_PICKLE_DIR) # inception_v3_features.pkl
        activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32)

        announce("Evaluating Reals")
        # Calculate statistics for reals.
        cache_file = self._get_cache_file_for_reals(num_images=self.num_images)
        os.makedirs(os.path.dirname(cache_file), exist_ok=True)
        if os.path.isfile(cache_file):
            mu_real, sigma_real = misc.load_pkl(cache_file)
            print("loaded real mu, sigma from cache.")
        else:
            progress = 0
            for idx, data in tqdm(enumerate(self._iterate_reals(minibatch_size=minibatch_size)), position=0, leave=True):
                batch_stacks = data[0]
                progress += batch_stacks.shape[0]
                images = batch_stacks[:,0,:,:,:]
                landmarks = batch_stacks[:,1,:,:,:]

                # compute inception on full images!!!
                begin = idx * minibatch_size
                end = min(begin + minibatch_size, self.num_images)
                activations[begin:end] = inception.run(images[:end-begin], num_gpus=num_gpus, assume_frozen=True)


                # visualization
                images = images.astype(np.float32) / 255 * 2.0 - 1.0
                landmarks = landmarks.astype(np.float32) / 255 * 2.0 - 1.0

                if idx <= 10:
                    debug_img = np.concatenate([
                        images, # original landmarks
                        landmarks # original portraits,
                    ], axis=0)
                    debug_img = adjust_pixel_range(debug_img)
                    debug_img = fuse_images(debug_img, row=2, col=minibatch_size)
                    save_image("data_iter_{}08d.png".format(idx), debug_img)
                if end == self.num_images:
                    break
            mu_real = np.mean(activations, axis=0)
            sigma_real = np.cov(activations, rowvar=False)
            misc.save_pkl((mu_real, sigma_real), cache_file)

#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
        
        announce("Evaluating Generator.")
        # Construct TensorFlow graph.
        result_expr = []
        print("Construct TensorFlow graph.")
        for gpu_idx in range(num_gpus):
            with tf.device('/gpu:%d' % gpu_idx):
                Gs_clone = Gs.clone()
                inception_clone = inception.clone()
                latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
                images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
                images = tflib.convert_images_to_uint8(images)
                result_expr.append(inception_clone.get_output_for(images))

        # Calculate statistics for fakes.
        print("Calculate statistics for fakes.")
        for begin in tqdm(range(0, self.num_images, minibatch_size), position=0, leave=True):
            end = min(begin + minibatch_size, self.num_images)
            #print("result_expr", len(result_expr)) # result_expr is a list!!!
            # results_expr[0].shape = (8, 2048) -> hat nur ein element.
            # weil: eigentlich würde man halt hier die GPUs zusammen konkattenieren.

            res_expr, fakes = tflib.run([result_expr, images])
            activations[begin:end] = np.concatenate(res_expr, axis=0)[:end-begin]

            if begin < 20:
                fakes = fakes.astype(np.float32) / 255 * 2.0 - 1.0
                debug_img = np.concatenate([
                    fakes
                ], axis=0)
                debug_img = adjust_pixel_range(debug_img)
                debug_img = fuse_images(debug_img, row=3, col=minibatch_size)
                save_image("fid_generator_iter_{}08d.png".format(end), debug_img)


        mu_fake = np.mean(activations, axis=0)
        sigma_fake = np.cov(activations, rowvar=False)

        #print("mu_fake={}, sigma_fake={}".format(mu_fake, sigma_fake))
        
        # Calculate FID.
        print("Calculate FID (generator).")
        m = np.square(mu_fake - mu_real).sum()
        s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
        dist = m + np.trace(sigma_fake + sigma_real - 2*s)
        self._report_result(np.real(dist), suffix="StyleGAN Generator Only")
        print("Distance StyleGAN", dist)

#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------

        announce("Now evaluating encoder (appearnace)")
        print("building custom encoder graph!")
        with tf.variable_scope('fakeddddoptimizer'):

            # Build graph.
            BATCH_SIZE = self.minibatch_per_gpu
            input_shape = Inv.input_shape
            input_shape[0] = BATCH_SIZE
            latent_shape = Gs.components.synthesis.input_shape
            latent_shape[0] = BATCH_SIZE

            x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
            x_lm = tf.placeholder(tf.float32, shape=input_shape, name='some_landmark')
            x_kp = tf.placeholder(tf.float32, shape=[self.minibatch_per_gpu, 136], name='some_keypoints')

            if self.model_type == "rignet":
                w_enc_1 = Inv.get_output_for(x, phase=False)
                wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
                w_enc = E.get_output_for(wp_enc_1, x_lm, phase=False)
            elif self.model_type == "keypoints":
                w_enc_1 = Inv.get_output_for(x, phase=False)
                wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
                w_enc = E.get_output_for(wp_enc_1, x_kp, phase=False)
            else:
                w_enc = E.get_output_for(x, x_lm, phase=False)

            wp_enc = tf.reshape(w_enc, latent_shape)

            manipulated_images = Gs.components.synthesis.get_output_for(wp_enc, randomize_noise=False)
            manipulated_images = tflib.convert_images_to_uint8(manipulated_images)
            inception_codes = inception_clone.get_output_for(manipulated_images) # shape (8, 2048)

        for idx, data in tqdm(enumerate(self._iterate_reals(minibatch_size=minibatch_size)), position=0, leave=True):
            batch_stacks = data[0]
            images = batch_stacks[:,0,:,:,:]    # shape (8, 3, 128, 128)
            landmarks = batch_stacks[:,1,:,:,:] # shape (8, 3, 128, 128)
            images = images.astype(np.float32) / 255 * 2.0 - 1.0
            landmarks = landmarks.astype(np.float32) / 255 * 2.0 - 1.0
            keypoints = np.roll(data[1], shift=1, axis=0)

            begin = idx * minibatch_size
            end = min(begin + minibatch_size, self.num_images) # begin: 0; end: 8

            activations[begin:end], manip  = tflib.run([inception_codes, manipulated_images], feed_dict={x:images, x_lm:landmarks, x_kp:keypoints})
            # acivations: (5000, 2048)



            if idx < 10:
                print("saving img")
                manip = manip.astype(np.float32) / 255 * 2.0 - 1.0
                debug_img = np.concatenate([
                    images, # original landmarks
                    landmarks, # original portraits,
                    manip
                ], axis=0)
                debug_img = adjust_pixel_range(debug_img)
                debug_img = fuse_images(debug_img, row=3, col=minibatch_size)
                save_image("fid_iter_{}08d.png".format(idx), debug_img)


            if end == self.num_images:
                break

        mu_fake = np.mean(activations, axis=0)
        sigma_fake = np.cov(activations, rowvar=False)
        #print("enc_mu_fake={}, enc_sigma_fake={}".format(mu_fake, sigma_fake))


        # Calculate FID.
        print("Calculate FID for encoded samples")
        m = np.square(mu_fake - mu_real).sum()
        s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
        dist = m + np.trace(sigma_fake + sigma_real - 2*s)
        self._report_result(np.real(dist), suffix="Our Face-Landmark-Encoder (Apperance)")
        print("distance OUR FACE-LANDMARK-ENCODER", dist)


#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------

        announce("Now evaluating encoder. (POSE)")
        print("building custom encoder graph!")
        with tf.variable_scope('fakeddddoptimizer'):

            # Build graph.
            BATCH_SIZE = self.minibatch_per_gpu
            input_shape = Inv.input_shape
            input_shape[0] = BATCH_SIZE
            latent_shape = Gs.components.synthesis.input_shape
            latent_shape[0] = BATCH_SIZE

            x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
            x_lm = tf.placeholder(tf.float32, shape=input_shape, name='some_landmark')
            x_kp = tf.placeholder(tf.float32, shape=[self.minibatch_per_gpu, 136], name='some_keypoints')

            if self.model_type == "rignet":
                w_enc_1 = Inv.get_output_for(x, phase=False)
                wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
                w_enc = E.get_output_for(wp_enc_1, x_lm, phase=False)
            elif self.model_type == "keypoints":
                w_enc_1 = Inv.get_output_for(x, phase=False)
                wp_enc_1 = tf.reshape(w_enc_1, latent_shape)
                w_enc = E.get_output_for(wp_enc_1, x_kp, phase=False)
            else:
                w_enc = E.get_output_for(x, x_lm, phase=False)

            wp_enc = tf.reshape(w_enc, latent_shape)

            manipulated_images = Gs.components.synthesis.get_output_for(wp_enc, randomize_noise=False)
            manipulated_images = tflib.convert_images_to_uint8(manipulated_images)
            inception_codes = inception_clone.get_output_for(manipulated_images) # shape (8, 2048)

        for idx, data in tqdm(enumerate(self._iterate_reals(minibatch_size=minibatch_size)), position=0, leave=True):

            image_data = data[0]
            images = image_data[:,0,:,:,:]
            landmarks = np.roll(image_data[:,1,:,:,:], shift=1, axis=0)
            
            keypoints = np.roll(data[1], shift=1, axis=0)

            images = images.astype(np.float32) / 255 * 2.0 - 1.0
            landmarks = landmarks.astype(np.float32) / 255 * 2.0 - 1.0

            begin = idx * minibatch_size
            end = min(begin + minibatch_size, self.num_images) # begin: 0; end: 8

            activations[begin:end], manip  = tflib.run([inception_codes, manipulated_images], feed_dict={x:images, x_lm:landmarks, x_kp:keypoints})
            # acivations: (5000, 2048)



            if idx < 10:
                print("saving img")
                manip = manip.astype(np.float32) / 255 * 2.0 - 1.0
                debug_img = np.concatenate([
                    images, # original landmarks
                    landmarks, # original portraits,
                    manip
                ], axis=0)
                debug_img = adjust_pixel_range(debug_img)
                debug_img = fuse_images(debug_img, row=3, col=minibatch_size)
                save_image("fid_iter_POSE_{}08d.png".format(idx), debug_img)


            if end == self.num_images:
                break

        mu_fake = np.mean(activations, axis=0)
        sigma_fake = np.cov(activations, rowvar=False)
        #print("enc_mu_fake={}, enc_sigma_fake={}".format(mu_fake, sigma_fake))


        # Calculate FID.
        print("Calculate FID for encoded samples (POSE)")
        m = np.square(mu_fake - mu_real).sum()
        s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
        dist = m + np.trace(sigma_fake + sigma_real - 2*s)
        self._report_result(np.real(dist), suffix="Our_Face_Landmark_Encoder (Pose)")
        print("distance OUR FACE-LANDMARK-ENCODER (POSE)", dist)

#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------

        announce("Now in domain inversion only encoder.")
        print("building custom in domain inversion graph!")
        with tf.variable_scope('fakedddwdoptimizer'):

            # Build graph.
            BATCH_SIZE = self.minibatch_per_gpu
            input_shape = Inv.input_shape
            input_shape[0] = BATCH_SIZE
            latent_shape = Gs.components.synthesis.input_shape
            latent_shape[0] = BATCH_SIZE

            x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')

            w_enc_1 = Inv.get_output_for(x, phase=False)
            wp_enc_1 = tf.reshape(w_enc_1, latent_shape)

            manipulated_images = Gs.components.synthesis.get_output_for(wp_enc_1, randomize_noise=False)
            manipulated_images = tflib.convert_images_to_uint8(manipulated_images)
            inception_codes = inception_clone.get_output_for(manipulated_images)

        for idx, data in tqdm(enumerate(self._iterate_reals(minibatch_size=minibatch_size)), position=0, leave=True):
            batch_stacks = data[0]
            images = batch_stacks[:,0,:,:,:]
            landmarks = batch_stacks[:,1,:,:,:]
            images = images.astype(np.float32) / 255 * 2.0 - 1.0
            landmarks = landmarks.astype(np.float32) / 255 * 2.0 - 1.0

            #print("landmarks", landmarks.shape)# (8, 3, 128, 128)
            #print("images", images.shape) # (8, 3, 128, 128)
            #print("inception_codes", inception_codes.shape) # (8, 2048)
            #print("activations", activations.shape) # (5000, 2048)
            begin = idx * minibatch_size
            end = min(begin + minibatch_size, self.num_images)
            #print("b,e", begin, end) # 0, 8; ...

            activations[begin:end]  = tflib.run(inception_codes, feed_dict={x:images})

            if end == self.num_images:
                break

        mu_fake = np.mean(activations, axis=0)
        sigma_fake = np.cov(activations, rowvar=False)
        #print("enc_mu_fake={}, enc_sigma_fake={}".format(mu_fake, sigma_fake))


        # Calculate FID.
        print("Calculate FID for IN-DOMAIN-GAN-INVERSION")
        m = np.square(mu_fake - mu_real).sum()
        s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
        dist = m + np.trace(sigma_fake + sigma_real - 2*s)
        self._report_result(np.real(dist), suffix="_In-Domain-Inversion_Only")
        print("distance IN-DOMAIN-GAN-INVERSION:", dist)
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.target_list)
    target_list_name = os.path.splitext(os.path.basename(args.target_list))[0]
    assert os.path.exists(args.context_list)
    context_list_name = os.path.splitext(os.path.basename(
        args.context_list))[0]
    output_dir = args.output_dir or f'results/diffusion'
    job_name = f'{target_list_name}_TO_{context_list_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]
    crop_size = args.crop_size
    crop_x = args.center_x - crop_size // 2
    crop_y = args.center_y - crop_size // 2
    mask = np.zeros((1, image_size, image_size, 3), dtype=np.float32)
    mask[:, crop_y:crop_y + crop_size, crop_x:crop_x + crop_size, :] = 1.0

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_mask = (tf.transpose(x, [0, 2, 3, 1]) + 1) * mask - 1
    x_mask_255 = (x_mask + 1) / 2 * 255
    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = args.batch_size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_mask = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) * mask - 1
    x_rec_mask_255 = (x_rec_mask + 1) / 2 * 255

    w_enc = E.get_output_for(x, phase=False)
    wp_enc = tf.reshape(w_enc, latent_shape)
    setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    logger.info(f'Setting configuration for optimization.')
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_mask_255)
    x_rec_feat = perceptual_model(x_rec_mask_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x_mask - x_rec_mask), axis=[1, 2, 3])

    loss = loss_pix + args.loss_weight_feat * loss_feat
    optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Load image list.
    logger.info(f'Loading target images and context images.')
    target_list = []
    with open(args.target_list, 'r') as f:
        for line in f:
            target_list.append(line.strip())
    num_targets = len(target_list)
    context_list = []
    with open(args.context_list, 'r') as f:
        for line in f:
            context_list.append(line.strip())
    num_contexts = len(context_list)
    num_pairs = num_targets * num_contexts

    # Invert images.
    logger.info(f'Start diffusion.')
    save_interval = args.num_iterations // args.num_results
    headers = [
        'Target Image', 'Context Image', 'Stitched Image', 'Encoder Output'
    ]
    for step in range(1, args.num_iterations + 1):
        if step == args.num_iterations or step % save_interval == 0:
            headers.append(f'Step {step:06d}')
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_pairs,
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    latent_codes_enc = []
    latent_codes = []
    for target_idx in tqdm(range(num_targets), desc='Target ID', leave=False):
        # Load target.
        target_image = resize_image(load_image(target_list[target_idx]),
                                    (image_size, image_size))
        save_image(f'{output_dir}/target.png', target_image)
        visualizer.set_cell(target_idx * num_contexts, 0, image=target_image)
        for context_idx in tqdm(range(0, num_contexts, args.batch_size),
                                desc='Context ID',
                                leave=False):
            row_idx = target_idx * num_contexts + context_idx
            batch = context_list[context_idx:context_idx + args.batch_size]
            for i, context_image_path in enumerate(batch):
                context_image = resize_image(load_image(context_image_path),
                                             (image_size, image_size))
                save_image(f'{output_dir}/context.png', context_image)
                visualizer.set_cell(row_idx + i, 1, image=context_image)
                context_image[crop_y:crop_y + crop_size, crop_x:crop_x +
                              crop_size] = (target_image[crop_y:crop_y +
                                                         crop_size,
                                                         crop_x:crop_x +
                                                         crop_size])
                save_image(f'{output_dir}/stitched.png', context_image)
                visualizer.set_cell(row_idx + i, 2, image=context_image)
                images[i] = np.transpose(context_image, [2, 0, 1])
            inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
            # Run encoder.
            sess.run([setter], {x: inputs})
            outputs = sess.run([wp, x_rec])
            latent_codes_enc.append(outputs[0][0:len(batch)])
            outputs[1] = adjust_pixel_range(outputs[1])
            for i, _ in enumerate(batch):
                visualizer.set_cell(row_idx + i, 3, image=outputs[1][i])
            # Optimize latent codes.
            col_idx = 4
            for step in tqdm(range(1, args.num_iterations + 1), leave=False):
                sess.run(train_op, {x: inputs})
                if step == args.num_iterations or step % save_interval == 0:
                    outputs = sess.run([wp, x_rec])
                    outputs[1] = adjust_pixel_range(outputs[1])
                    for i, _ in enumerate(batch):
                        visualizer.set_cell(row_idx + i,
                                            col_idx,
                                            image=outputs[1][i])
                        save_image(f'{output_dir}/output.png', outputs[1][i])
                    col_idx += 1
            latent_codes.append(outputs[0][0:len(batch)])

    # Save results.
    code_shape = [num_targets, num_contexts] + list(latent_shape[1:])
    np.save(f'{output_dir}/{job_name}_encoded_codes.npy',
            np.concatenate(latent_codes_enc, axis=0).reshape(code_shape))
    np.save(f'{output_dir}/{job_name}_inverted_codes.npy',
            np.concatenate(latent_codes, axis=0).reshape(code_shape))
    visualizer.save(f'{output_dir}/{job_name}.html')
Exemple #18
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.image_list)
    image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
    output_dir = args.output_dir or f'results/inversion/{image_list_name}'
    logger = setup_logger(output_dir, 'inversion.log', 'inversion_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_255 = (tf.transpose(x, [0, 2, 3, 1]) + 1) / 2 * 255
    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = args.batch_size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_255 = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) / 2 * 255
    if args.random_init:
        logger.info(f'  Use random initialization for optimization.')
        wp_rnd = tf.random.normal(shape=latent_shape, name='latent_code_init')
        setter = tf.assign(wp, wp_rnd)
    else:
        logger.info(
            f'  Use encoder output as the initialization for optimization.')
        w_enc = E.get_output_for(x, is_training=False)
        wp_enc = tf.reshape(w_enc, latent_shape)
        setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    logger.info(f'Setting configuration for optimization.')
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_255)
    x_rec_feat = perceptual_model(x_rec_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x - x_rec), axis=[1, 2, 3])
    if args.domain_regularizer:
        logger.info(f'  Involve encoder for optimization.')
        w_enc_new = E.get_output_for(x_rec, is_training=False)
        wp_enc_new = tf.reshape(w_enc_new, latent_shape)
        loss_enc = tf.reduce_mean(tf.square(wp - wp_enc_new), axis=[1, 2])
    else:
        logger.info(f'  Do NOT involve encoder for optimization.')
        loss_enc = 0
    loss = (loss_pix + args.loss_weight_feat * loss_feat +
            args.loss_weight_enc * loss_enc)
    optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Load image list.
    logger.info(f'Loading image list.')
    image_list = []
    with open(args.image_list, 'r') as f:
        for line in f:
            image_list.append(line.strip())

    # Invert images.
    logger.info(f'Start inversion.')
    save_interval = args.num_iterations // args.num_results
    headers = ['Name', 'Original Image', 'Encoder Output']
    for step in range(1, args.num_iterations + 1):
        if step == args.num_iterations or step % save_interval == 0:
            headers.append(f'Step {step:06d}')
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=len(image_list),
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    names = ['' for _ in range(args.batch_size)]
    latent_codes_enc = []
    latent_codes = []
    for img_idx in tqdm(range(0, len(image_list), args.batch_size),
                        leave=False):
        # Load inputs.
        batch = image_list[img_idx:img_idx + args.batch_size]
        for i, image_path in enumerate(batch):
            image = resize_image(load_image(image_path),
                                 (image_size, image_size))
            images[i] = np.transpose(image, [2, 0, 1])
            names[i] = os.path.splitext(os.path.basename(image_path))[0]
        inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
        # Run encoder.
        sess.run([setter], {x: inputs})
        outputs = sess.run([wp, x_rec])
        latent_codes_enc.append(outputs[0][0:len(batch)])
        outputs[1] = adjust_pixel_range(outputs[1])
        for i, _ in enumerate(batch):
            image = np.transpose(images[i], [1, 2, 0])
            save_image(f'{output_dir}/{names[i]}_ori.png', image)
            save_image(f'{output_dir}/{names[i]}_enc.png', outputs[1][i])
            visualizer.set_cell(i + img_idx, 0, text=names[i])
            visualizer.set_cell(i + img_idx, 1, image=image)
            visualizer.set_cell(i + img_idx, 2, image=outputs[1][i])
        # Optimize latent codes.
        col_idx = 3
        for step in tqdm(range(1, args.num_iterations + 1), leave=False):
            sess.run(train_op, {x: inputs})
            if step == args.num_iterations or step % save_interval == 0:
                outputs = sess.run([wp, x_rec])
                outputs[1] = adjust_pixel_range(outputs[1])
                for i, _ in enumerate(batch):
                    if step == args.num_iterations:
                        save_image(f'{output_dir}/{names[i]}_inv.png',
                                   outputs[1][i])
                    visualizer.set_cell(i + img_idx,
                                        col_idx,
                                        image=outputs[1][i])
                col_idx += 1
        latent_codes.append(outputs[0][0:len(batch)])

    # Save results.
    os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
    np.save(f'{output_dir}/encoded_codes.npy',
            np.concatenate(latent_codes_enc, axis=0))
    np.save(f'{output_dir}/inverted_codes.npy',
            np.concatenate(latent_codes, axis=0))
    visualizer.save(f'{output_dir}/inversion.html')
Exemple #19
0
def main():
    """Main function."""
    args = parse_args()

    work_dir = args.output_dir or f'{args.model_name}_manipulation'
    logger_name = f'{args.model_name}_manipulation_logger'
    logger = setup_logger(work_dir, args.logfile_name, logger_name)

    logger.info(f'Initializing generator.')
    model = build_generator(args.model_name, logger=logger)

    logger.info(f'Preparing latent codes.')
    if os.path.isfile(args.latent_codes_path):
        logger.info(f'  Load latent codes from `{args.latent_codes_path}`.')
        latent_codes = np.load(args.latent_codes_path)
        latent_codes = model.preprocess(
            latent_codes=latent_codes,
            latent_space_type=args.latent_space_type)
    else:
        if args.num <= 0:
            raise ValueError(
                f'Argument `num` should be specified as a positive '
                f'number since the latent code path '
                f'`{args.latent_codes_path}` does not exist!')
        logger.info(f'  Sample latent codes randomly.')
        latent_codes = model.easy_sample(
            num=args.num, latent_space_type=args.latent_space_type)
    total_num = latent_codes.shape[0]

    latent_codes = model.easy_synthesize(
        latent_codes=latent_codes,
        latent_space_type=args.latent_space_type,
        generate_style=False,
        generate_image=False)
    for key, val in latent_codes.items():
        np.save(os.path.join(work_dir, f'{key}.npy'), val)

    boundaries = parse_boundary_list(args.boundary_list_path)

    step = args.step + int(args.step % 2
                           == 0)  # Make sure it is an odd number.

    for boundary_info, boundary_path in boundaries.items():
        boundary_name, space_type = boundary_info
        logger.info(
            f'Boundary `{boundary_name}` from {space_type.upper()} space.')
        prefix = f'{boundary_name}_{space_type}'

        if args.generate_html:
            viz_size = None if args.viz_size == 0 else args.viz_size
            visualizer = HtmlPageVisualizer(num_rows=total_num,
                                            num_cols=step + 1,
                                            viz_size=viz_size)
            visualizer.set_headers(
                [''] + [f'Step {i - step // 2}' for i in range(step // 2)] +
                ['Origin'] + [f'Step {i + 1}' for i in range(step // 2)])

        if args.generate_video:
            setup_images = model.easy_synthesize(
                latent_codes=latent_codes[args.latent_space_type],
                latent_space_type=args.latent_space_type)['image']
            fusion_kwargs = {
                'row': args.row,
                'col': args.col,
                'row_spacing': args.row_spacing,
                'col_spacing': args.col_spacing,
                'border_left': args.border_left,
                'border_right': args.border_right,
                'border_top': args.border_top,
                'border_bottom': args.border_bottom,
                'black_background': not args.white_background,
                'image_size': None if args.viz_size == 0 else args.viz_size,
            }
            setup_image = fuse_images(setup_images, **fusion_kwargs)
            video_writer = VideoWriter(os.path.join(
                work_dir, f'{prefix}_{args.video_name}'),
                                       frame_height=setup_image.shape[0],
                                       frame_width=setup_image.shape[1],
                                       fps=args.fps)

        logger.info(f'  Loading boundary.')
        try:
            boundary_file = np.load(boundary_path, allow_pickle=True).item()
            boundary = boundary_file['boundary']
            manipulate_layers = boundary_file['meta_data']['manipulate_layers']
        except ValueError:
            boundary = np.load(boundary_path)
            manipulate_layers = args.manipulate_layers
        logger.info(f'  Manipulating on layers `{manipulate_layers}`.')

        np.save(os.path.join(work_dir, f'{prefix}_boundary.npy'), boundary)

        if args.layerwise_manipulation and space_type != 'z':
            layerwise_manipulation = True
            is_code_layerwise = True
            is_boundary_layerwise = (space_type == 'wp')
            if (not args.disable_manipulation_truncation
                ) and space_type == 'w':
                strength = get_layerwise_manipulation_strength(
                    model.num_layers, model.truncation_psi,
                    model.truncation_layers)
            else:
                strength = 1.0
            space_type = 'wp'
        else:
            if args.layerwise_manipulation:
                logger.warning(f'  Skip layer-wise manipulation for boundary '
                               f'`{boundary_name}` from Z space. Traditional '
                               f'manipulation is used instead.')
            layerwise_manipulation = False
            is_code_layerwise = False
            is_boundary_layerwise = False
            strength = 1.0

        codes = manipulate(latent_codes=latent_codes[space_type],
                           boundary=boundary,
                           start_distance=args.start_distance,
                           end_distance=args.end_distance,
                           step=step,
                           layerwise_manipulation=layerwise_manipulation,
                           num_layers=model.num_layers,
                           manipulate_layers=manipulate_layers,
                           is_code_layerwise=is_code_layerwise,
                           is_boundary_layerwise=is_boundary_layerwise,
                           layerwise_manipulation_strength=strength)
        np.save(
            os.path.join(work_dir, f'{prefix}_manipulated_{space_type}.npy'),
            codes)

        logger.info(f'  Start manipulating.')
        for s in tqdm(range(step), leave=False):
            images = model.easy_synthesize(
                latent_codes=codes[:,
                                   s], latent_space_type=space_type)['image']
            if args.generate_video:
                video_writer.write(fuse_images(images, **fusion_kwargs))
            for n, image in enumerate(images):
                if args.save_raw_synthesis:
                    save_image(
                        os.path.join(work_dir,
                                     f'{prefix}_{n:05d}_{s:03d}.jpg'), image)
                if args.generate_html:
                    visualizer.set_cell(n, s + 1, image=image)
                    if s == 0:
                        visualizer.set_cell(n, 0, text=f'Sample {n:05d}')

        if args.generate_html:
            visualizer.save(
                os.path.join(work_dir, f'{prefix}_{args.html_name}'))