def __init__(self, args):
        self.args = args
        self.batch_size = args.batch_size
        #self.batch_size = 1
        self.finetune_topk = args.finetune_topk
        self.lr = args.lr
        self.use_cuda = (args.use_cuda == True) and torch.cuda.is_available()
        print('Use cuda:', self.use_cuda)
        if self.use_cuda:
            torch.cuda.set_device(int(args.gpu))

        module = importlib.import_module(".".join([args.model_name]))
        MyModel = getattr(module, 'MyModel')
        self.network = MyModel(args)
        self.init_optimizer()
        if args.pretrained:
            print('Load pretrained model from %s...' % args.pretrained)
            self.load(args.pretrained)
        else:
            self.load_embeddings(vocab.tokens(), args.embedding_file)
        self.network.register_buffer(
            'fixed_embedding',
            self.network.embedding.weight.data[self.finetune_topk:].clone())
        if self.use_cuda:
            self.network.cuda()
        print(self.network)
        self._report_num_trainable_parameters()
Exemple #2
0
 def __init__(self, args):
     self.args = args
     self.batch_size = args.batch_size
     self.finetune_topk = args.finetune_topk
     self.lr = args.lr
     self.use_cuda = (args.use_cuda == True) and torch.cuda.is_available()
     print('Use cuda:', self.use_cuda)
     if self.use_cuda:
         torch.cuda.set_device(int(args.gpu))
     self.network = TriAN(args)
     self.init_optimizer()
     # load pretrained model
     if args.pretrained:
         print('Load pretrained model from %s...' % args.pretrained)
         self.load(args.pretrained)
     else:
         if args.use_elmo == False:
             self.load_embeddings(vocab.tokens(), args.embedding_file)
     if args.use_elmo == False:
         self.network.register_buffer(
             'fixed_embedding',
             self.network.embedding.weight.data[self.finetune_topk:].clone(
             ))
         self.elmo = None
     else:
         options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json"
         weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
         self.elmo = ElmoEmbedder(options_file, weight_file, cuda_device=0)
         # self.elmo = Elmo(options_file, weight_file, num_output_representations=2, dropout=0, requires_grad=False)
     if self.use_cuda:
         self.network.cuda()
     print(self.network)
     self._report_num_trainable_parameters()
Exemple #3
0
 def __init__(self, args):
     self.args = args
     self.batch_size = args.batch_size
     self.finetune_topk = args.finetune_topk
     self.lr = args.lr
     #self.use_cuda = (args.use_cuda == True) and torch.cuda.is_available()
     #print('Use cuda:', self.use_cuda)
     #if self.use_cuda:
     #    torch.cuda.set_device(int(args.gpu))
     tf.reset_default_graph()
     self.sess = tf.Session()
     self.network = TriAN(args)
     self.init_optimizer()
     if args.pretrained:
         print('Load pretrained model from %s...' % args.pretrained)
         self.load(args.pretrained)
     else:
         self.word_emb_mat = self.load_embeddings(vocab.tokens(),
                                                  args.embedding_file)
     self.sess.run(tf.global_variables_initializer())
     self._report_num_trainable_parameters()
Exemple #4
0
 def __init__(self, args):
     self.args = args
     self.batch_size = args.batch_size
     self.finetune_topk = args.finetune_topk
     self.lr = args.lr
     self.use_cuda = (args.use_cuda == True) and torch.cuda.is_available()
     print('Use cuda:', self.use_cuda)
     if self.use_cuda:
         torch.cuda.set_device(int(args.gpu))
     self.network = JointQA(args)
     self.init_optimizer()
     self.nli_loss_criterion = torch.nn.NLLLoss()
     if args.pretrained:
         print('Load pretrained model from %s...' % args.pretrained)
         self.load(args.pretrained)
     else:
         self.load_embeddings(vocab.tokens(), args.embedding_file)
     self.network.register_buffer('fixed_embedding', self.network.embedding.weight.data[self.finetune_topk:].clone())
     if self.use_cuda:
         self.network.cuda()
     print(self.network)
     self._report_num_trainable_parameters()
    def __init__(self, args):
        self.args = args
        self.batch_size = args.batch_size
        self.finetune_topk = args.finetune_topk
        self.lr = args.lr
        self.use_cuda = (args.use_cuda == True) and torch.cuda.is_available()
        print('Use cuda:', self.use_cuda)
        if self.use_cuda:
            torch.cuda.set_device(int(args.gpu))
        # self.network = TriAN(args)
        # self.network = simpleModel(args)
        self.network = simpleModel(args)

        self.init_optimizer()

        # load pretrained model
        if args.pretrained:
            print('Load pretrained model from %s...' % args.pretrained)
            self.load(args.pretrained)
        else:
            if args.use_elmo == False:
                self.load_embeddings(vocab.tokens(), args.embedding_file)
        if args.use_elmo == False:
            self.network.register_buffer('fixed_embedding',
                                         self.network.embedding.weight.data[self.finetune_topk:].clone())
            self.elmo = None
        else:
            options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json"
            weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
            from allennlp.commands.elmo import ElmoEmbedder
            self.elmo = ElmoEmbedder(options_file, weight_file, cuda_device=0)
        if self.use_cuda:
            self.network.cuda()
        print(self.network)
        self._report_num_trainable_parameters()

        self.crit = torch.nn.BCEWithLogitsLoss(reduce=False, pos_weight=torch.FloatTensor([args.pos_weight]).cuda())