def __init__(self):
     self.anchors_path = './model_data/yolo_anchors.txt'
     self.classes_path = './model_data/coco_classes.txt'
     self.class_names = read_classes(self.classes_path)
     self.anchors = read_anchors(self.anchors_path)
     self.threshold = threshold
     self.ignore_thresh = ignore_thresh
     self.INPUT_SIZE = (Input_shape, Input_shape
                        )  # fixed size or (None, None)
     self.is_fixed_size = self.INPUT_SIZE != (None, None)
Exemple #2
0
 def vehicle_detection_YOLO(self,img):
     #Read in the class names and anchor locations
     self.class_names = yolo_utils.read_class_names(self.class_path)
     self.anchors = yolo_utils.read_anchors(self.anchors_path)
     
     #Pre-process the incoming frame
     resized_img = cv2.resize(img,(416,416))
     batch_img = resized_img/255.
     batch_img = np.expand_dims(batch_img, axis=0)
     
     #Perform the prediction
     n_classes = len(self.class_names)
     out_boxes, out_scores, out_classes = yolo_utils.YOLO_predict(img, batch_img, self.sess, self.model, self.anchors, n_classes)
     
     return out_boxes, out_scores, out_classes
Exemple #3
0
    def __init__(self):

        self.anchors_path = path + '/model/yolo_anchors.txt'
        self.COCO = False
        self.trainable = True

        args1 = sys.argv[2]
        if args1 == 'COCO':
            print("-----------COCO-----------")
            self.COCO = True
            self.classes_path = path + '/model/coco_classes.txt'
            self.trainable = False
        elif args1 == 'VOC':
            print("-----------VOC------------")
            self.classes_path = path + '/model/voc_classes.txt'
        elif args1 == 'boat':
            print("-----------boat-----------")
            self.classes_path = path + '/model/boat_classes.txt'

        # args = self.argument()
        # if args.COCO:
        #     print("-----------COCO-----------")
        #     self.COCO = True
        #     self.classes_path = self.PATH + '/model/coco_classes.txt'
        #     self.trainable = False
        # elif args.VOC:
        #     print("-----------VOC------------")
        #     self.classes_path = self.PATH + '/model/voc_classes.txt'
        # elif args.boat:
        #     print("-----------boat-----------")
        #     self.classes_path = self.PATH + '/model/boat_classes.txt'

        self.class_names = read_classes(self.classes_path)
        self.anchors = read_anchors(self.anchors_path)
        self.threshold = 0.5  # threshold
        self.ignore_thresh = ignore_thresh
        self.INPUT_SIZE = (Input_shape, Input_shape
                           )  # fixed size or (None, None)
        self.is_fixed_size = self.INPUT_SIZE != (None, None)
        # LOADING SESSION...
        self.boxes, self.scores, self.classes, self.sess = self.load()
    def __init__(self):

        self.anchors_path = anchors_path
        self.COCO = False
        self.trainable = True
        # self.args = self.argument()
        if args.COCO:
            print("-----------COCO-----------")
            self.COCO = True
            self.trainable = False
        else:
            print("----------{}-----------".format(dataset_name))

        self.class_names = read_classes(dataset_class_file)
        self.anchors = read_anchors(self.anchors_path)
        self.threshold = threshold  # threshold
        self.ignore_thresh = ignore_thresh
        self.INPUT_SIZE = (Input_shape, Input_shape
                           )  # fixed size or (None, None)
        self.is_fixed_size = self.INPUT_SIZE != (None, None)
        # LOADING SESSION...
        self.boxes, self.scores, self.classes, self.sess = self.load()
Exemple #5
0
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

import argparse
import numpy as np
import tensorflow as tf
import time
import os
os.environ["CUDA_VISIBLE_DEVICES"] = visible_GPU

np.random.seed(101)

# PATH = path + '/yolo3'
classes_data = read_classes(dataset_class_file)
anchors = read_anchors(anchors_path)

data_path_train = 'Do_not_use_for_now'
data_path_valid = 'Do_not_use_for_now'
data_path_test = 'Do_not_use_for_now'

input_shape = (Input_shape, Input_shape)  # multiple of 32
########################################################################################################################
"""
# Clear the current graph in each run, to avoid variable duplication
# tf.reset_default_graph()
"""
print("Starting 1st session...")
# Explicitly create a Graph object
graph = tf.Graph()
with graph.as_default():
    colors = generate_colors(class_names)

    image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names,
                       colors)

    return image


if __name__ == "__main__":
    sess = K.get_session()

    yolo_model = load_model("model_data/tiny-yolo.h5")
    #yolo_model.summary()

    class_names = read_classes("model_data/yolo_coco_classes.txt")
    anchors = read_anchors("model_data/yolo_anchors.txt")
    '''
    # image detection
    image_file = "dog.jpg"
    image_path = "images/"
    image_shape = np.float32(cv2.imread(image_path + image_file).shape[:2])

    yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))
    scores, boxes, classes = yolo_eval(yolo_outputs, image_shape=image_shape)
    out_scores, out_boxes, out_classes = image_detection(sess, image_path, image_file)
    '''

    # video detection
    camera = cv2.VideoCapture(0)

    #camera.set(cv2.CAP_PROP_FRAME_WIDTH, 288) # 設計解析度