Exemple #1
0
def read_continuous_csv(filename):

    all_data = []

    with open(filename, "r") as infile:

        time = []
        data = []
        name = ""
        for line in infile:
            sline = line.split(",")
            if sline[0] == "Year":
                continue
            else:
                if name != "" and name != sline[1]:
                    all_data += [utils.Timeseries("Lake", time, data)]
                    time = []
                    data = []
                # else just read in
                name = sline[1]
                time += [int(sline[0])]
                data += [float(sline[2])]
        # and last one
        all_data += [utils.Timeseries("All", time, data)]

    return all_data  # read_continuous_csv
Exemple #2
0
def obtain_timeseries(filename, cube_name, ts_name, index, is_era5=False):

    # re-read the file to overwrite memory of what was done to this cube.
    cube_list = iris.load(filename)
    names = np.array([cube.name() for cube in cube_list])

    selected_cube, = np.where(names == cube_name)
    if len(selected_cube) == 0:
        names = np.array([cube.var_name for cube in cube_list])
        selected_cube, = np.where(names == cube_name)

    cube = cube_list[selected_cube[0]]
    cube.coord('latitude').guess_bounds()
    cube.coord('longitude').guess_bounds()

    nyears = np.ma.count(cube.data, axis=0)

    # repeat so selection will work across all years
    nyears = np.array([nyears for i in range(cube.data.shape[0])])

    cube.data = np.ma.masked_where(nyears < THRESHOLD * cube.data.shape[0],
                                   cube.data)

    weight_areas = iris.analysis.cartography.area_weights(cube)
    ts = cube.collapsed(['latitude', 'longitude'],
                        iris.analysis.MEAN,
                        weights=weight_areas)

    times = GetYears(ts, is_era5=is_era5)

    if index in ["TX90p", "TN90p", "TX10p", "TN10p"]:
        ts = utils.Timeseries(ts_name, times, ts.data * 3.65)

    else:
        ts = utils.Timeseries(ts_name, times, ts.data)

    # get coverage
    cover_cube = copy.deepcopy(cube)
    # replace data with 1
    cover_cube.data.data[:] = 1
    # and get timeseries
    weight_areas = iris.analysis.cartography.area_weights(cover_cube)
    cover_ts = cover_cube.collapsed(['latitude', 'longitude'],
                                    iris.analysis.SUM,
                                    weights=weight_areas)

    # normalise - obtain max area possible with each gridbox = 1
    norm_cube = copy.deepcopy(cover_cube)[0]
    norm_cube.data.mask = False
    weight_areas = iris.analysis.cartography.area_weights(norm_cube)
    norm = norm_cube.collapsed(['latitude', 'longitude'],
                               iris.analysis.SUM,
                               weights=weight_areas)

    # apply normalisation and convert to %.  Also convert to %land.
    cover_ts = (cover_ts / norm) * 100 / 0.3
    cover_ts = utils.Timeseries("Coverage", GetYears(cover_ts), cover_ts.data)

    return ts, cover_ts  # obtain_timeseries
Exemple #3
0
def read_hilo(filename):

    indata = np.genfromtxt(filename, dtype=(float))

    times = indata[:, 0]

    high = utils.Timeseries("Highest", times, indata[:, 1])
    low = utils.Timeseries("Lowest", times, indata[:, 2])

    return high, low # read_hilo
Exemple #4
0
def read_sie(filename):

    indata = np.genfromtxt(filename, dtype=(float), skip_header=3)
     
    arctic_max = utils.Timeseries("SIE", indata[:, 0], indata[:, 2])
    arctic_min = utils.Timeseries("SIE", indata[:, 0], indata[:, 4])
    antarctic_min = utils.Timeseries("SIE", indata[:, 0], indata[:, 6])
    antarctic_max = utils.Timeseries("SIE", indata[:, 0], indata[:, 8])

    return arctic_max, arctic_min, antarctic_min, antarctic_max # read_sie
Exemple #5
0
def read_uaw_ts(filename, smooth=False, annual=False):

    # IRIS doesn't like the Conventions attribute
    ncfile = ncdf.Dataset(filename, 'r')

    time = ncfile.variables["time"][:]
    # time = YYYYMM
    times = np.array(
        [int(str(t)[:4]) + ((float(str(t)[4:]) - 1) / 12.) for t in time])

    # smooth using 12 point boxcar
    if smooth:
        points = 12
        merra = make_masked_smoothed_ts("MERRA-2", times,
                                        ncfile.variables["MERRA2"][:], points)
        #        grasp = make_masked_smoothed_ts("GRASP", times, ncfile.variables["GRASP"][:], points)
        #        cera20c = make_masked_smoothed_ts("CERA20C", times, ncfile.variables["CERA20C"][:], points)
        jra55 = make_masked_smoothed_ts("JRA-55", times,
                                        ncfile.variables["JRA55"][:], points)
        erai = make_masked_smoothed_ts("ERA-Interim", times,
                                       ncfile.variables["ERAI"][:], points)
        era5 = make_masked_smoothed_ts("ERA5", times,
                                       ncfile.variables["ERA5"][:], points)

    if annual:
        merra = make_masked_annual_ts("MERRA-2", times,
                                      ncfile.variables["MERRA2"][:])
        #        grasp = make_masked_annual_ts("GRASP", times, ncfile.variables["GRASP"][:])
        #        cera20c = make_masked_annual_ts("CERA20C", times, ncfile.variables["CERA20C"][:])
        jra55 = make_masked_annual_ts("JRA-55", times,
                                      ncfile.variables["JRA55"][:])
        erai = make_masked_annual_ts("ERA-Interim", times,
                                     ncfile.variables["ERAI"][:])
        era5 = make_masked_annual_ts("ERA5", times,
                                     ncfile.variables["ERA5"][:])

    if not smooth and not annual:
        merra = utils.Timeseries("MERRA-2", times,
                                 ncfile.variables["MERRA2"][:])
        #        grasp = utils.Timeseries("GRASP", times, ncfile.variables["GRASP"][:])
        #        cera20c = utils.Timeseries("CERA20C", times, ncfile.variables["CERA20C"][:])
        jra55 = utils.Timeseries("JRA-55", times, ncfile.variables["JRA55"][:])
        erai = utils.Timeseries("ERA-Interim", times,
                                ncfile.variables["ERAI"][:])
        era5 = utils.Timeseries("ERA5", times, ncfile.variables["ERA5"][:])

    ncfile.close()

    # set ERA-Interim linestyle
    erai.ls = "--"

    return era5, erai, merra, jra55  # read_uaw_ts
Exemple #6
0
def read_ts(filename):
    '''
    Read timeseries
    '''

    indata = np.genfromtxt(filename, delimiter=',', dtype=(float))

    years = indata[:, 0].astype(float)

    anomalies = utils.Timeseries("Anomalies", years, indata[:, 1])
    uncertainties = utils.Timeseries("Uncertainties", years, indata[:, 2])

    return anomalies, uncertainties  # read_ts
Exemple #7
0
def read_ssu_csv(filename):
    """
    Read user supplied CSV for LST into Timeseries object
    """

    indata = np.genfromtxt(filename, delimiter=',', dtype=(float), \
                               skip_header=5, missing_values="", filling_values=-99.9)

    indata = np.ma.masked_where(indata == -99.9, indata)
    ssu2 = utils.Timeseries("NOAA", indata[:, 0], indata[:, 2])
    ncar = utils.Timeseries("NCAR", indata[:, 0], indata[:, 4])

    return ssu2, ncar  # read_ssu_csv
Exemple #8
0
def read_csv(filename):
    """
    Read user supplied CSV for LST into Timeseries object
    """

    indata = np.genfromtxt(filename, delimiter=',', dtype=(float), \
                               skip_header=5, missing_values="", filling_values=-99.9)

    indata = np.ma.masked_where(indata == -99.9, indata)

    raobcore = utils.Timeseries("RAOBCORE v1.7", indata[:, 0], indata[:, 1])
    rich = utils.Timeseries("RICH v1.7", indata[:, 0], indata[:, 2])
    ratpac = utils.Timeseries("RATPAC A2", indata[:, 0], indata[:, 3])
    #   unsw = utils.Timeseries("UNSW v1.0", indata[:, 0], indata[:, 4])
    UAH = utils.Timeseries("UAH v6.0", indata[:, 0], indata[:, 4])
    rss = utils.Timeseries("RSS v4.0", indata[:, 0], indata[:, 5])
    noaa = utils.Timeseries("NOAA v4.1", indata[:, 0], indata[:, 6])

    #    era5 = utils.Timeseries("ERA5", indata[:, 0], indata[:, 8])
    jra = utils.Timeseries("JRA-55", indata[:, 0], indata[:, 7])
    merra = utils.Timeseries("MERRA-2", indata[:, 0], indata[:, 8])

    #    cmip = utils.Timeseries("CMIP5", indata[:, 0], indata[:, 11])
    #    ssu3 = utils.Timeseries("SSU-3", indata[:, 0], indata[:, 12])

    return UAH, rss, ratpac, raobcore, rich, noaa, jra, merra  # read_csv
def read_bartlett_gpp(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries object s
    '''

    raw_data = np.genfromtxt(filename, dtype=(float), skip_header=1, delimiter=",")

    gpp = utils.Timeseries("Bartlett GPP", raw_data[:, 0], raw_data[:, 6])
    gcc = utils.Timeseries("Bartlett GCC", raw_data[:, 7], raw_data[:, 8])

    return gpp, gcc # read_bartlett_gpp
Exemple #10
0
def read_bartlett_green(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries object s
    '''

    raw_data = np.genfromtxt(filename, dtype=(int))

    start = utils.Timeseries("Greenup", raw_data[:, 0], raw_data[:, 1])
    end = utils.Timeseries("Greendown", raw_data[:, 0], raw_data[:, 2])
    diff = utils.Timeseries("Difference ", raw_data[:, 0], raw_data[:, 3])

    return start, end, diff # read_bartlett_green
Exemple #11
0
def read_dwd_fagus(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries object s
    '''

    raw_data = np.genfromtxt(filename, dtype=(int), skip_header=1, delimiter=",")
    
    betula_fall = utils.Timeseries("B. pendula", raw_data[:, 0], raw_data[:, 2])
    fagus_out = utils.Timeseries("F. sylvatica", raw_data[:, 0], raw_data[:, 4])
    fagus_fall = utils.Timeseries("F. sylvatica", raw_data[:, 0], raw_data[:, 6])
    
    return betula_fall, fagus_out, fagus_fall # read_dwd_fagus
Exemple #12
0
def read_polar(filename):
    """
    Read user supplied data for LST into Timeseries object
    """
    indata = np.genfromtxt(filename, dtype=(float), skip_header=1)

    year = indata[:, 0]

    north = indata[:, 1]
    south = indata[:, 2]

    north = utils.Timeseries("North Pole", year, north)
    south = utils.Timeseries("South Pole -15" + r'$^\circ$' + "C", year, south)

    return north, south  # read_polar
Exemple #13
0
def read_time(filename):
    """
    Read user supplied CSV for GLE into Timeseries object
    """

    times = np.arange(1980, int(settings.YEAR) + 1, 1)

    indata = np.genfromtxt(filename, delimiter=',', dtype=(float))

    globe = utils.Timeseries("Globe", times, indata[:, 0])
    NH = utils.Timeseries("N. Hemisphere", times, indata[:, 1])
    SH = utils.Timeseries("S. Hemisphere", times, indata[:, 2])
    SOI = utils.Timeseries("SOI", times, indata[:, 3])

    return globe, NH, SH, SOI  # read_time
Exemple #14
0
def obtain_timeseries(filename, cube_name, ts_name):

    # re-read the file to overwrite memory of what was done to this cube.
    cube_list = iris.load(filename)
    names = np.array([cube.name() for cube in cube_list])

    selected_cube, = np.where(names == cube_name)

    cube = cube_list[selected_cube]
    cube.coord('latitude').guess_bounds()
    cube.coord('longitude').guess_bounds()

    nyears = np.ma.count(cube.data, axis=0)

    # repeat so selection will work across all years
    nyears = np.array([nyears for i in range(cube.data.shape[0])])

    cube.data = np.ma.masked_where(nyears < THRESHOLD * cube.data.shape[0],
                                   cube.data)

    weight_areas = iris.analysis.cartography.area_weights(cube)
    ts = cube.collapsed(['latitude', 'longitude'],
                        iris.analysis.MEAN,
                        weights=weight_areas)

    ts = utils.Timeseries(ts_name, GetYears(ts), ts.data * 3.65)

    return ts
Exemple #15
0
def make_smoothed_ts(ts, points):
    '''
    Make a smoothed timeseries array.  

    :param Timeseries ts: input timeseries
    :param int points: for boxcar
    '''

    smoothed = np.ma.zeros(len(ts.data))
    smoothed.mask = np.zeros(smoothed.shape)

    for d in range(len(ts.data)):

        # if a running centred mean:
        if d < points / 2.:
            smoothed.mask[d] = 1
        elif d > (len(ts.data) - points / 2.):
            smoothed.mask[d] = 1
        else:
            smoothed[d] = np.mean(ts.data[d - points / 2:d + points / 2])

        # if a running previous N-month mean
        # if d < points:
        #     smoothed[d] = np.mean(ts.data[:d])
        # elif d > (len(ts.data) - points):
        #     smoothed.mask[d] = 1
        # else:
        #     smoothed[d] = np.mean(ts.data[d - points: d])

    smoothed_ts = utils.Timeseries(ts.name, ts.times, smoothed)

    return smoothed_ts  # make_masked_smoothed_ts
Exemple #16
0
def read_ts(filename, start, name, smooth=False):
    '''
    Read the timeseries data, and use the hard-coded start and end years
    to make up the time axis for returning Timeseries objects.

    :param str filename: file to read
    :param int start: year of start of data 
    :param str name: name of Timeseries object
    :param bool smooth: if True, then == value of smoothing

    :returns: Timeseries object
    '''

    data = np.genfromtxt(filename, dtype=(float), skip_header=5)

    # create the times
    times = []
    year = start
    while year <= int(settings.YEAR):

        times += [list(year + DECIMAL_MONTHS)]

        year += 1

    times = np.array([val for sublist in times for val in sublist])

    assert len(times) == len(data)

    # smooth if required
    if smooth:
        data = utils.boxcar(data, smooth)

    ts = utils.Timeseries(name, times, data)

    return ts  # read_ts
Exemple #17
0
def read_dwd_quercus(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.
    
    :param str filename: file to read
    :returns: Timeseries object s
    '''
    
    raw_data = np.genfromtxt(filename, dtype=(int), skip_header=3, delimiter=",", skip_footer=7, filling_values=-1)

    raw_data = np.ma.masked_where(raw_data < 0, raw_data)

    quercus_out = utils.Timeseries("Q. robur", raw_data[:, 0], raw_data[:, 8])
    quercus_fall = utils.Timeseries("Q. robur", raw_data[:, 0], raw_data[:, 22])
    
    return quercus_out, quercus_fall # read_dwd_betula
Exemple #18
0
def read_winter_nao(DATALOC, years):
    '''
    Read the NAO data, returns Timeseries and smoothed version

    '''

    ts_list = []
    smoothed = []
    
    for y in years:

        all_data = np.genfromtxt(DATALOC + "SLP_WinterNAOtimeseries_{}.txt".format(y), dtype=(float), skip_header=1)

        days = all_data[:, 1].astype(int)
        months = all_data[:, 0].astype(int)
        years = np.array([y for i in days]).astype(int)
        years[months < 12] = years[months < 12] + 1

        times = np.array([dt.datetime(years[i], months[i], days[i]) for i in range(len(days))])

        data = np.ma.masked_where(all_data[:, 2] <= -99.99, all_data[:, 2])
                                  
        ts_list += [utils.Timeseries("{}/{}".format(y, int(y[2:])+1), times, data)]

        smoothed += [np.ma.masked_where(all_data[:, 3] <= -99.99, all_data[:, 3])]

    return ts_list, smoothed # read_winter_nao
Exemple #19
0
def read_bartlett_duke(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries object s
    '''

    raw_data = np.genfromtxt(filename, dtype=(float), skip_header=1, delimiter=",")

    days = raw_data[:, 0]  

    bartlett = utils.Timeseries("Bartlett GCC", days, raw_data[:, 10])
    duke = utils.Timeseries("Duke GCC", days, raw_data[:, 12])

    return bartlett, duke # read_bartlett_duke
Exemple #20
0
def read_cei(filename):

    indata = np.genfromtxt(DATALOC + filename,
                           delimiter=',',
                           encoding='latin-1')

    return utils.Timeseries("CEI", indata[:, 0], indata[:, 1])  # read_cei
Exemple #21
0
def read_swv(filename):

    indata = np.genfromtxt(filename, dtype=(float), delimiter=",")
     
    swv = utils.Timeseries("SWV", indata[:, 0], indata[:, 1])

    return swv # read_SWV
Exemple #22
0
def read_slr(filename):

    indata = np.genfromtxt(filename, dtype=(float))
     
    slr = utils.Timeseries("SLR", indata[:, 0], indata[:, 1])

    return slr # read_SLR
Exemple #23
0
def read_uk_csv(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries object s
    '''

    raw_data = np.genfromtxt(filename, dtype=(str), skip_header=6, skip_footer=13, delimiter=",")
    
    alder = utils.Timeseries("A. glutinosa", raw_data[:, 0].astype(int), raw_data[:, 1].astype(int))
    chestnut = utils.Timeseries("A. hippocastanum", raw_data[:, 0].astype(int), raw_data[:, 2].astype(int))
    oak = utils.Timeseries("Q. robur (2000-{})".format(settings.YEAR[2:]), raw_data[:, 0].astype(int), raw_data[:, 3].astype(int))
    beech = utils.Timeseries("F. sylvatica", raw_data[:, 0].astype(int), raw_data[:, 4].astype(int))
    
    return alder, chestnut, oak, beech # read_uk_csv
Exemple #24
0
def read_data(filename):

    indata = np.genfromtxt(filename, skip_header=2, delimiter=",")

    # process the years and months to give decimals
    years = indata[:, 0]
    months = indata[:, 1]

    times = years + (months - 1) / 12.

    # make timeseries objects
    moderate = utils.Timeseries("Moderate", times, indata[:, 2])
    severe = utils.Timeseries("Severe", times, indata[:, 3])
    extreme = utils.Timeseries("Extreme", times, indata[:, 4])

    return moderate, severe, extreme  # read_data
Exemple #25
0
def read_land(filename):

    indata = np.genfromtxt(filename, dtype=(float), skip_header=1)

    indata = np.ma.masked_where(indata == -99.99, indata)

    ghcn = utils.Timeseries("GHCN", indata[:, 0], indata[:, 1])
    #    ghcn2 = utils.Timeseries("GHCNv2", indata[:, 0], indata[:, 2])
    gpcc = utils.Timeseries("GPCC", indata[:, 0], indata[:, 2])
    gpcp = utils.Timeseries("GPCPv23", indata[:, 0], indata[:, 3])

    #    cfsr = utils.Timeseries("CFSR", indata[:, 0], indata[:, 5])
    #    erai = utils.Timeseries("ERA-Interim", indata[:, 0], indata[:, 5])
    #   merra = utils.Timeseries("MERRA-2", indata[:, 0], indata[:, 6])

    return ghcn, gpcc, gpcp  # read_land
Exemple #26
0
def read_ts(filename, name):
    '''
    Read the GRACE timeseries and return a Timeseries object

    :param str filename: file to read
    :param str name: name of timeseries

    :returns: Timeseries object
    '''

    indata = np.genfromtxt(filename, dtype=(float))

    if name == "GRACE":
        data = np.ma.masked_where(indata[:, 1] == 998.0, indata[:, 1])
    times = indata[:, 0].astype(str)

    if name == "Model":
        years = np.array([str(y)[:4] for y in times]).astype(float)
        months = np.array([str(y)[4:6] for y in times]).astype(float)

        time = years + (months - 1) / 12. + (1 / 24.
                                             )  # place in centre of month

        # mask first 3 months (Matt Rodell email, 14-2-2019)
        data = np.ma.array(indata[:, 2])
        data.mask = np.zeros(data.shape[0])
        data.mask[:3] = True
    else:
        time = times.astype(float)

    return utils.Timeseries(name, time, data)  # read_ts
Exemple #27
0
def read_arct(filename):
    """ Read the Arctic Temperatures"""

    indata = np.genfromtxt(filename, delimiter=",", skip_header=1)

    arct = utils.Timeseries("ARCT", indata[:, 0], indata[:, 1])

    return arct # read_arct
def read_windermere_csv(filename):
    '''
    Read the timeseries data, and returning Timeseries objects.

    :param str filename: file to read
    :returns: Timeseries objects
    '''

    raw_data = np.genfromtxt(filename,
                             dtype=(int),
                             skip_header=1,
                             delimiter=",")

    times = raw_data[:, 0]
    north = utils.Timeseries("North Basin", times, raw_data[:, 1])
    south = utils.Timeseries("South Basin", times, raw_data[:, 2])

    return north, south  # read_windermere_csv
Exemple #29
0
def read_ts(filename):
    '''
    Read timeseries
    '''

    indata = np.genfromtxt(filename,
                           delimiter=',',
                           dtype=(float),
                           skip_header=1)

    years = indata[:, 0].astype(float)

    euro = utils.Timeseries("Lake", years, indata[:, 1])
    africa = utils.Timeseries("Lake", years, indata[:, 2])
    tibet = utils.Timeseries("Lake", years, indata[:, 3])
    canada = utils.Timeseries("Lake", years, indata[:, 4])

    return euro, africa, tibet, canada  # read_ts
Exemple #30
0
def read_csv(filename):
    """
    Read user supplied CSV for LST into Timeseries object
    """

    indata = np.genfromtxt(filename,
                           delimiter=",",
                           dtype=(float),
                           skip_header=1,
                           encoding="latin-1")

    times = indata[:, 0]

    data = indata[:, 1]
    fit = indata[:, 2]

    return utils.Timeseries("AT", times,
                            data), utils.Timeseries("AT", times, fit)