Exemple #1
0
 def predict_proba(self, X):
     loader = _build_data_loader(self.batch_size, X)
     for idx, x in enumerate(loader):
         if idx == 0:
             y_hat = self(x.float()).data.numpy()
         else:
             y_hat = np.vstack([y_hat, self(x.float()).data.numpy()])
     return y_hat
Exemple #2
0
    def fit(self,
            X,
            y,
            epochs=10,
            loss='mse',
            learning_rate=1e-3,
            batch_size=10,
            solver='adam',
            verbose=False):

        self.batch_size = batch_size
        loader = _build_data_loader(self.batch_size, X, y)
        opt = OPTIMIZERS[solver](self.parameters(), lr=learning_rate)
        crit = LOSS_FUNCS[loss]
        for _ in range(epochs):
            for x, y in loader:
                opt.zero_grad()
                y_hat = self(x.float())
                loss = crit(y_hat, y.float())
                loss.backward()
                opt.step()
Exemple #3
0
    def fit(self,
            X,
            y,
            epochs=10,
            loss='crossentropy',
            learning_rate=1e-3,
            batch_size=10,
            optim='adam',
            verbose=False):

        self.batch_size = batch_size
        loader = _build_data_loader(self.batch_size, X, y)
        opt = OPTIMIZERS[optim](self.parameters(), lr=learning_rate)
        crit = LOSS_FUNCS[loss]
        for e in range(epochs):
            if verbose:
                print('\rEpoch {}'.format(e + 1), end='')
            for x, y in loader:
                opt.zero_grad()
                y_hat = self(x.float())
                loss = crit(y_hat, y.float())
                loss.backward()
                opt.step()