test_cv_preds = test_cv_preds.iloc[:, 3:].values.reshape( len(test_cv_preds), -1, 4) predictions = predictions.reshape(-1, 240, order='A') predictions = predictions.reshape(-1, 4, 60) predictions = utils.xywh_to_x1y1x2y2(predictions) predictions = np.swapaxes(predictions, 1, 2) predictions = np.around(predictions).astype(int) predictions = test_cv_preds - predictions gt_df = pd.read_csv('./outputs/ground_truth/test_' + detector + '_fold_' + str(fold) + '.csv') gt_boxes = gt_df.iloc[:, 3:].values.reshape(len(gt_df), -1, 4) aiou = utils.calc_aiou(gt_boxes, predictions) fiou = utils.calc_fiou(gt_boxes, predictions) print('AIOU: ', round(aiou * 100, 1)) print('FIOU: ', round(fiou * 100, 1)) print('Saving predictions to ./outputs/sted/test_' + detector + '_fold_' + str(fold) + '.csv') for i in range(1, 61): results_df['x1_' + str(i)] = predictions[:, i - 1, 0] results_df['y1_' + str(i)] = predictions[:, i - 1, 1] results_df['x2_' + str(i)] = predictions[:, i - 1, 2] results_df['y2_' + str(i)] = predictions[:, i - 1, 3] results_df.to_csv('./outputs/sted/test_' + detector + '_fold_' + str(fold) + '.csv',
fious = [] ades = [] fdes = [] for fold in [1, 2, 3]: gt_df = pd.read_csv(args.gt + '/test_' + detector + '_fold_' + str(fold) + '.csv') pred_df = pd.read_csv(args.pred + '/test_' + detector + '_fold_' + str(fold) + '.csv') gt_boxes = gt_df[box_names].values.reshape(len(gt_df), -1, 4) pred_boxes = pred_df[box_names].values.reshape(len(pred_df), -1, 4) ade = utils.calc_ade(gt_boxes, pred_boxes) fde = utils.calc_fde(gt_boxes, pred_boxes) aiou = utils.calc_aiou(gt_boxes, pred_boxes) fiou = utils.calc_fiou(gt_boxes, pred_boxes) aious.append(aiou) fious.append(fiou) ades.append(ade) fdes.append(fde) print() print(detector + ' fold ' + str(fold)) print('AIOU: ', round(aiou * 100, 1)) print('FIOU: ', round(fiou * 100, 1)) print('ADE: ', round(ade, 1)) print('FDE: ', round(fde, 1)) print()