def _calculateEfficiency(self):
        if self.Xtrain is None:
            pass
        else:
            predTrain = self.computePredictions(self.Xtrain)
            predValid = self.computePredictions(self.Xvalid)
            predTest = self.computePredictions(self.Xtest)

            self.trainError.append(
                100 -
                utils.calculatePredictionsEfficiency(predTrain, self.ytrain))
            self.epochData.append("{:.3f}".format(
                self.trainError[len(self.trainError) - 1]))

            self.validError.append(
                100 -
                utils.calculatePredictionsEfficiency(predValid, self.yvalid))
            self.epochData[len(self.epochData) - 1] += ";" + "{:.3f}".format(
                self.validError[len(self.validError) - 1])

            self.testError.append(
                100 -
                utils.calculatePredictionsEfficiency(predTest, self.ytest))
            self.epochData[len(self.epochData) - 1] += ";" + "{:.3f}".format(
                self.testError[len(self.testError) - 1])
Exemple #2
0
def test():

    Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMoonFile()
    h = 200
    wd = 0.0001
    K = 200
    maxIter = 500

    # neuralNetwork = NeuralNetwork(len(Xtrain[0]), h, utils.getClassCount(ytrain), K=10, wd=wd)
    neuralNetworkEfficient = NeuralNetworkEfficient(
        len(Xtrain[0]), h, utils.getClassCount(ytrain), K, wd=wd)
    # neuralNetworkEfficient._w1 = neuralNetwork._w1
    # neuralNetworkEfficient._w2 = neuralNetwork._w2
    # neuralNetwork.train(Xtrain, ytrain, maxIter)
    # predTrain = neuralNetwork.computePredictions(Xtrain)
    # predValid = neuralNetwork.computePredictions(Xvalid)
    # predTest = neuralNetwork.computePredictions(Xtest)
    # trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    # validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    # testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    # print( "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
    #         + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
    #         + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%")

    neuralNetworkEfficient.train(Xtrain, ytrain, maxIter)
    predTrain = neuralNetworkEfficient.computePredictions(Xtrain)
    predValid = neuralNetworkEfficient.computePredictions(Xvalid)
    predTest = neuralNetworkEfficient.computePredictions(Xtest)
    trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    print( "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
            + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
            + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%")
Exemple #3
0
def test():

    Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMoonFile()
    h = 200
    wd = 0.0001
    K = 200
    maxIter = 500

    # neuralNetwork = NeuralNetwork(len(Xtrain[0]), h, utils.getClassCount(ytrain), K=10, wd=wd)
    neuralNetworkEfficient = NeuralNetworkEfficient(len(Xtrain[0]), h, utils.getClassCount(ytrain), K, wd=wd)
    # neuralNetworkEfficient._w1 = neuralNetwork._w1
    # neuralNetworkEfficient._w2 = neuralNetwork._w2
    # neuralNetwork.train(Xtrain, ytrain, maxIter)
    # predTrain = neuralNetwork.computePredictions(Xtrain)
    # predValid = neuralNetwork.computePredictions(Xvalid)
    # predTest = neuralNetwork.computePredictions(Xtest)
    # trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    # validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    # testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    # print( "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
    #         + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
    #         + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%")


    neuralNetworkEfficient.train(Xtrain, ytrain, maxIter)
    predTrain = neuralNetworkEfficient.computePredictions(Xtrain)
    predValid = neuralNetworkEfficient.computePredictions(Xvalid)
    predTest = neuralNetworkEfficient.computePredictions(Xtest)
    trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    print( "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
            + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
            + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%")
Exemple #4
0
def trainAndPrint(Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest, h, wd, maxIter):
    neuralNetwork = NeuralNetworkEfficient(len(Xtrain[0]), h, utils.getClassCount(ytrain), K=50, wd=wd)
    neuralNetwork.train(Xtrain, ytrain, maxIter)
    predTrain = neuralNetwork.computePredictions(Xtrain)
    predValid = neuralNetwork.computePredictions(Xvalid)
    predTest = neuralNetwork.computePredictions(Xtest)
    trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    hparams = "[h: " + str(h) + " / wd: " + str(wd) + " / " + str(maxIter) + " epoques]"
    title = "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
            + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
            + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%"
    name = "regions_decision" + str(h) + "_" + str(wd) + "_" + str(maxIter)
    utils.plotRegionsDescision(Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest, neuralNetwork, title, name,hparams)
    def _calculateEfficiency(self):
        if self.Xtrain is None:
            pass
        else:
            predTrain = self.computePredictions(self.Xtrain)
            predValid = self.computePredictions(self.Xvalid)
            predTest = self.computePredictions(self.Xtest)

            self.trainError.append(100-utils.calculatePredictionsEfficiency(predTrain, self.ytrain))
            self.epochData.append("{:.3f}".format(self.trainError[len(self.trainError)-1]))

            self.validError.append(100-utils.calculatePredictionsEfficiency(predValid, self.yvalid))
            self.epochData[len(self.epochData)-1] += ";"+"{:.3f}".format(self.validError[len(self.validError)-1])

            self.testError.append(100-utils.calculatePredictionsEfficiency(predTest, self.ytest))
            self.epochData[len(self.epochData)-1] += ";"+"{:.3f}".format(self.testError[len(self.testError)-1])
Exemple #6
0
def trainAndPrint(Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest, h, wd,
                  maxIter):
    neuralNetwork = NeuralNetworkEfficient(len(Xtrain[0]),
                                           h,
                                           utils.getClassCount(ytrain),
                                           K=50,
                                           wd=wd)
    neuralNetwork.train(Xtrain, ytrain, maxIter)
    predTrain = neuralNetwork.computePredictions(Xtrain)
    predValid = neuralNetwork.computePredictions(Xvalid)
    predTest = neuralNetwork.computePredictions(Xtest)
    trainEfficiency = utils.calculatePredictionsEfficiency(predTrain, ytrain)
    validEfficiency = utils.calculatePredictionsEfficiency(predValid, yvalid)
    testEfficiency = utils.calculatePredictionsEfficiency(predTest, ytest)
    hparams = "[h: " + str(h) + " / wd: " + str(wd) + " / " + str(
        maxIter) + " epoques]"
    title = "Train Err: " + "{:.2f}".format(100 - trainEfficiency) + "%" \
            + " / Valid Err: " + "{:.2f}".format(100 - validEfficiency) + "%" \
            + " / Test Err: " + "{:.2f}".format(100 - testEfficiency) + "%"
    name = "regions_decision" + str(h) + "_" + str(wd) + "_" + str(maxIter)
    utils.plotRegionsDescision(Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest,
                               neuralNetwork, title, name, hparams)