Exemple #1
0
    def predict_proba(self, X, check_input=True):
        """Predict class probabilities of the input samples X.

        The predicted class probability is the fraction of samples of the same
        class in a leaf.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : array of shape = [n_samples, n_classes], or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        check_is_fitted(self, 'n_outputs_')
        if check_input:
            X = check_array(X, dtype=DTYPE)

        n_samples, n_features = X.shape

        if self.tree_ is None:
            raise NotFittedError("Tree not initialized. Perform a fit first.")

        if self.n_features_ != n_features:
            raise ValueError("Number of features of the model must "
                             " match the input. Model n_features is %s and "
                             " input n_features is %s " %
                             (self.n_features_, n_features))

        proba = self.tree_.predict(X)

        if self.n_outputs_ == 1:
            proba = proba[:, :self.n_classes_]
            normalizer = proba.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba /= normalizer

            return proba

        else:
            all_proba = []

            for k in range(self.n_outputs_):
                proba_k = proba[:, k, :self.n_classes_[k]]
                normalizer = proba_k.sum(axis=1)[:, np.newaxis]
                normalizer[normalizer == 0.0] = 1.0
                proba_k /= normalizer
                all_proba.append(proba_k)

            return all_proba
Exemple #2
0
    def fit(self, X, y):
        """ Fit model with specified loss.

        Parameters
        ----------
        X : scipy.sparse.csc_matrix, (n_samples, n_features)

        y : float | ndarray, shape = (n_samples, )

                the targets have to be encodes as {-1, 1}.
        """
        y = _validate_class_labels(y)
        self.classes_ = np.unique(y)
        if len(self.classes_) != 2:
            raise ValueError("This solver only supports binary classification"
                             " but the data contains"
                             " class: %r" % self.classes_)

        # fastFM-core expects labels to be in {-1,1}
        y_train = y.copy()
        i_class1 = (y_train == self.classes_[0])
        y_train[i_class1] = -1
        y_train[-i_class1] = 1

        check_consistent_length(X, y)
        y = y.astype(np.float64)
        X = X.T
        X = check_array(X, accept_sparse="csc", dtype=np.float64)

        self.w0_, self.w_, self.V_ = ffm.ffm_sgd_fit(self, X, y)
        return self
Exemple #3
0
def _validate_mcmc_fit_input(X_train, y_train, X_test):

    check_consistent_length(X_train, y_train)
    assert_all_finite(y_train)
    y_train = check_array(y_train, ensure_2d=False, dtype=np.float64)

    assert X_train.shape[1] == X_test.shape[1]
    X_train = check_array(X_train,
                          accept_sparse="csc",
                          dtype=np.float64,
                          order="F")
    X_test = check_array(X_test,
                         accept_sparse="csc",
                         dtype=np.float64,
                         order="F")
    return X_train, y_train, X_test
Exemple #4
0
    def predict_proba(self, X, check_input=True):
        """Predict class probabilities of the input samples X.

        The predicted class probability is the fraction of samples of the same
        class in a leaf.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : array of shape = [n_samples, n_classes], or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        check_is_fitted(self, 'n_outputs_')
        if check_input:
            X = check_array(X, dtype=DTYPE)

        n_samples, n_features = X.shape

        if self.tree_ is None:
            raise NotFittedError("Tree not initialized. Perform a fit first.")

        if self.n_features_ != n_features:
            raise ValueError("Number of features of the model must "
                             " match the input. Model n_features is %s and "
                             " input n_features is %s "
                             % (self.n_features_, n_features))

        proba = self.tree_.predict(X)

        if self.n_outputs_ == 1:
            proba = proba[:, :self.n_classes_]
            normalizer = proba.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba /= normalizer

            return proba

        else:
            all_proba = []

            for k in range(self.n_outputs_):
                proba_k = proba[:, k, :self.n_classes_[k]]
                normalizer = proba_k.sum(axis=1)[:, np.newaxis]
                normalizer[normalizer == 0.0] = 1.0
                proba_k /= normalizer
                all_proba.append(proba_k)

            return all_proba
Exemple #5
0
    def fit(self, X, y):
        """ Fit model with specified loss.

        Parameters
        ----------
        X : scipy.sparse.csc_matrix, (n_samples, n_features)

        y : float | ndarray, shape = (n_samples, )

        """

        check_consistent_length(X, y)
        y = check_array(y, ensure_2d=False, dtype=np.float64)
        X = X.T
        X = check_array(X, accept_sparse="csc", dtype=np.float64)

        self.w0_, self.w_, self.V_ = ffm.ffm_sgd_fit(self, X, y)
        return self
Exemple #6
0
    def predict(self, X_test):
        """ Return predictions

        Parameters
        ----------
        X : scipy.sparse.csc_matrix, (n_samples, n_features)

        Returns
        ------

        T : array, shape (n_samples)
            The labels are returned for classification.
        """
        X_test = check_array(X_test, accept_sparse="csc", dtype=np.float64,
                             order="F")
        assert sp.isspmatrix_csc(X_test)
        assert X_test.shape[1] == len(self.w_)
        return ffm.ffm_predict(self.w0_, self.w_, self.V_, X_test)
Exemple #7
0
    def fit(self, X, pairs):
        """ Fit model with specified loss.

        Parameters
        ----------
        X : scipy.sparse.csc_matrix, (n_samples, n_features)

        y : float | ndarray, shape = (n_compares, 2)
                Each row `i` defines a pair of samples such that
                the first returns a high value then the second
                FM(X[i,0]) > FM(X[i, 1]).
        """
        X = X.T
        X = check_array(X, accept_sparse="csc", dtype=np.float64)
        assert_all_finite(pairs)

        pairs = pairs.astype(np.float64)
        # check that pairs contain no real values
        np.testing.assert_array_equal(pairs, pairs.astype(np.int32))
        assert pairs.max() <= X.shape[1]
        assert pairs.min() >= 0
        self.w0_, self.w_, self.V_ = ffm.ffm_fit_sgd_bpr(self, X, pairs)
        return self
Exemple #8
0
    def predict(self, X, check_input=True):
        """Predict class or regression value for X.

        For a classification model, the predicted class for each sample in X is
        returned. For a regression model, the predicted value based on X is
        returned.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        y : array of shape = [n_samples] or [n_samples, n_outputs]
            The predicted classes, or the predict values.
        """
        if check_input:
            X = check_array(X, dtype=DTYPE)

        n_samples, n_features = X.shape

        if self.tree_ is None:
            raise NotFittedError("Tree not initialized. Perform a fit first")

        if self.n_features_ != n_features:
            raise ValueError("Number of features of the model must "
                             " match the input. Model n_features is %s and "
                             " input n_features is %s " %
                             (self.n_features_, n_features))

        proba = self.tree_.predict(X)

        # Classification
        if isinstance(self, ClassifierMixin):
            if self.n_outputs_ == 1:
                return self.classes_.take(np.argmax(proba, axis=1), axis=0)

            else:
                predictions = np.zeros((n_samples, self.n_outputs_))

                for k in range(self.n_outputs_):
                    predictions[:,
                                k] = self.classes_[k].take(np.argmax(proba[:,
                                                                           k],
                                                                     axis=1),
                                                           axis=0)

                return predictions

        # Regression
        else:
            if self.n_outputs_ == 1:
                return proba[:, 0]

            else:
                return proba[:, :, 0]
Exemple #9
0
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression). In the regression case, use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        self : object
            Returns self.
        """
        random_state = check_random_state(self.random_state)
        if check_input:
            X = check_array(X, dtype=DTYPE)

        # Determine output settings
        n_samples, self.n_features_ = X.shape
        is_classification = isinstance(self, ClassifierMixin)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            for k in range(self.n_outputs_):
                classes_k, y[:, k] = np.unique(y[:, k], return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original)

        else:
            self.classes_ = [None] * self.n_outputs_
            self.n_classes_ = [1] * self.n_outputs_

        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        # Check parameters
        max_depth = ((2**31) - 1 if self.max_depth is None else self.max_depth)
        max_leaf_nodes = (-1 if self.max_leaf_nodes is None else
                          self.max_leaf_nodes)

        if isinstance(self.max_features, string_types):
            if self.max_features == "auto":
                if is_classification:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError(
                    'Invalid value for max_features. Allowed string '
                    'values are "auto", "sqrt" or "log2".')

        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1,
                                   int(self.max_features * self.n_features_))
            else:
                max_features = 0

        self.max_features_ = max_features

        if len(y) != n_samples:
            raise ValueError("Number of labels=%d does not match "
                             "number of samples=%d" % (len(y), n_samples))
        if self.min_samples_split <= 0:
            raise ValueError("min_samples_split must be greater than zero.")
        if self.min_samples_leaf <= 0:
            raise ValueError("min_samples_leaf must be greater than zero.")
        if not 0 <= self.min_weight_fraction_leaf <= 0.5:
            raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
        if max_depth <= 0:
            raise ValueError("max_depth must be greater than zero. ")
        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")
        if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)):
            raise ValueError("max_leaf_nodes must be integral number but was "
                             "%r" % max_leaf_nodes)
        if -1 < max_leaf_nodes < 2:
            raise ValueError(("max_leaf_nodes {0} must be either smaller than "
                              "0 or larger than 1").format(max_leaf_nodes))

        if sample_weight is not None:
            if (getattr(sample_weight, "dtype", None) != DOUBLE
                    or not sample_weight.flags.contiguous):
                sample_weight = np.ascontiguousarray(sample_weight,
                                                     dtype=DOUBLE)
            if len(sample_weight.shape) > 1:
                raise ValueError("Sample weights array has more "
                                 "than one dimension: %d" %
                                 len(sample_weight.shape))
            if len(sample_weight) != n_samples:
                raise ValueError("Number of weights=%d does not match "
                                 "number of samples=%d" %
                                 (len(sample_weight), n_samples))

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if self.min_weight_fraction_leaf != 0. and sample_weight is not None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))
        else:
            min_weight_leaf = 0.

        # Set min_samples_split sensibly
        min_samples_split = max(self.min_samples_split,
                                2 * self.min_samples_leaf)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](self.n_outputs_,
                                                         self.n_classes_)
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_)

        SPLITTERS = DENSE_SPLITTERS

        splitter = self.splitter
        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](criterion, self.max_features_,
                                                self.min_samples_leaf,
                                                min_weight_leaf, random_state)

        self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_)

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(splitter, min_samples_split,
                                            self.min_samples_leaf,
                                            min_weight_leaf, max_depth)
        else:
            builder = BestFirstTreeBuilder(splitter, min_samples_split,
                                           self.min_samples_leaf,
                                           min_weight_leaf, max_depth,
                                           max_leaf_nodes)

        builder.build(self.tree_, X, y, sample_weight)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self
Exemple #10
0
def _validate_class_labels(y):
        assert len(set(y)) == 2
        assert y.min() == -1
        assert y.max() == 1
        return check_array(y, ensure_2d=False, dtype=np.float64)
Exemple #11
0
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression). In the regression case, use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        self : object
            Returns self.
        """
        random_state = check_random_state(self.random_state)
        if check_input:
            X = check_array(X, dtype=DTYPE)

        # Determine output settings
        n_samples, self.n_features_ = X.shape
        is_classification = isinstance(self, ClassifierMixin)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            for k in range(self.n_outputs_):
                classes_k, y[:, k] = np.unique(y[:, k], return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original)

        else:
            self.classes_ = [None] * self.n_outputs_
            self.n_classes_ = [1] * self.n_outputs_

        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        # Check parameters
        max_depth = ((2 ** 31) - 1 if self.max_depth is None
                     else self.max_depth)
        max_leaf_nodes = (-1 if self.max_leaf_nodes is None
                          else self.max_leaf_nodes)

        if isinstance(self.max_features, string_types):
            if self.max_features == "auto":
                if is_classification:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError(
                    'Invalid value for max_features. Allowed string '
                    'values are "auto", "sqrt" or "log2".')
                
        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1, int(self.max_features * self.n_features_))
            else:
                max_features = 0

        self.max_features_ = max_features

        if len(y) != n_samples:
            raise ValueError("Number of labels=%d does not match "
                             "number of samples=%d" % (len(y), n_samples))
        if self.min_samples_split <= 0:
            raise ValueError("min_samples_split must be greater than zero.")
        if self.min_samples_leaf <= 0:
            raise ValueError("min_samples_leaf must be greater than zero.")
        if not 0 <= self.min_weight_fraction_leaf <= 0.5:
            raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
        if max_depth <= 0:
            raise ValueError("max_depth must be greater than zero. ")
        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")
        if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)):
            raise ValueError("max_leaf_nodes must be integral number but was "
                             "%r" % max_leaf_nodes)
        if -1 < max_leaf_nodes < 2:
            raise ValueError(("max_leaf_nodes {0} must be either smaller than "
                              "0 or larger than 1").format(max_leaf_nodes))

        if sample_weight is not None:
            if (getattr(sample_weight, "dtype", None) != DOUBLE or
                    not sample_weight.flags.contiguous):
                sample_weight = np.ascontiguousarray(
                    sample_weight, dtype=DOUBLE)
            if len(sample_weight.shape) > 1:
                raise ValueError("Sample weights array has more "
                                 "than one dimension: %d" %
                                 len(sample_weight.shape))
            if len(sample_weight) != n_samples:
                raise ValueError("Number of weights=%d does not match "
                                 "number of samples=%d" %
                                 (len(sample_weight), n_samples))

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if self.min_weight_fraction_leaf != 0. and sample_weight is not None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))
        else:
            min_weight_leaf = 0.

        # Set min_samples_split sensibly
        min_samples_split = max(self.min_samples_split,
                                2 * self.min_samples_leaf)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](self.n_outputs_,
                                                         self.n_classes_)
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_)

        SPLITTERS = DENSE_SPLITTERS

        splitter = self.splitter
        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](criterion,
                                                self.max_features_,
                                                self.min_samples_leaf,
                                                min_weight_leaf,
                                                random_state)

        self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_)

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(splitter, min_samples_split,
                                            self.min_samples_leaf,
                                            min_weight_leaf,
                                            max_depth)
        else:
            builder = BestFirstTreeBuilder(splitter, min_samples_split,
                                           self.min_samples_leaf,
                                           min_weight_leaf,
                                           max_depth,
                                           max_leaf_nodes)

        builder.build(self.tree_, X, y, sample_weight)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self
Exemple #12
0
    def predict(self, X, check_input=True):
        """Predict class or regression value for X.

        For a classification model, the predicted class for each sample in X is
        returned. For a regression model, the predicted value based on X is
        returned.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        y : array of shape = [n_samples] or [n_samples, n_outputs]
            The predicted classes, or the predict values.
        """
        if check_input:
            X = check_array(X, dtype=DTYPE)

        n_samples, n_features = X.shape

        if self.tree_ is None:
            raise NotFittedError("Tree not initialized. Perform a fit first")

        if self.n_features_ != n_features:
            raise ValueError("Number of features of the model must "
                             " match the input. Model n_features is %s and "
                             " input n_features is %s "
                             % (self.n_features_, n_features))

        proba = self.tree_.predict(X)

        # Classification
        if isinstance(self, ClassifierMixin):
            if self.n_outputs_ == 1:
                return self.classes_.take(np.argmax(proba, axis=1), axis=0)

            else:
                predictions = np.zeros((n_samples, self.n_outputs_))

                for k in range(self.n_outputs_):
                    predictions[:, k] = self.classes_[k].take(
                        np.argmax(proba[:, k], axis=1),
                        axis=0)

                return predictions

        # Regression
        else:
            if self.n_outputs_ == 1:
                return proba[:, 0]

            else:
                return proba[:, :, 0]