Exemple #1
0
def ftae_test(model, args, use_cuda=False):

    device = torch.device("cuda" if use_cuda else "cpu")
    model.eval()

    # Precomputes Norm Statistics.
    if args.precompute_norm_stats:
        num_test_batch = int(args.num_block / (args.batch_size) *
                             args.test_ratio)
        for batch_idx in range(num_test_batch):
            X_test = torch.randint(
                0,
                2, (args.batch_size, args.block_len, args.code_rate_k),
                dtype=torch.float)
            X_test = X_test.to(device)
            _ = model.enc(X_test)
        print('Pre-computed norm statistics mean ', model.enc.mean_scalar,
              'std ', model.enc.std_scalar)

    ber_res, bler_res = [], []
    snr_interval = (args.snr_test_end -
                    args.snr_test_start) * 1.0 / (args.snr_points - 1)
    snrs = [
        snr_interval * item + args.snr_test_start
        for item in range(args.snr_points)
    ]
    print('SNRS', snrs)
    sigmas = snrs

    for sigma, this_snr in zip(sigmas, snrs):
        test_ber, test_bler = .0, .0
        with torch.no_grad():
            num_test_batch = int(args.num_block / (args.batch_size) *
                                 args.test_ratio)
            for batch_idx in range(num_test_batch):
                X_test = torch.randint(
                    0,
                    2, (args.batch_size, args.block_len, args.code_rate_k),
                    dtype=torch.float)
                fwd_noise = generate_noise(X_test.shape,
                                           args,
                                           test_sigma=sigma)

                X_test, fwd_noise = X_test.to(device), fwd_noise.to(device)

                X_hat_test, the_codes = model(X_test, fwd_noise)

                test_ber += errors_ber(X_hat_test, X_test)
                test_bler += errors_bler(X_hat_test, X_test)

                if batch_idx == 0:
                    test_pos_ber = errors_ber_pos(X_hat_test, X_test)
                    codes_power = code_power(the_codes)
                else:
                    test_pos_ber += errors_ber_pos(X_hat_test, X_test)
                    codes_power += code_power(the_codes)

            if args.print_pos_power:
                print('code power', codes_power / num_test_batch)
            if args.print_pos_ber:
                print('positional ber', test_pos_ber / num_test_batch)

        test_ber /= num_test_batch
        test_bler /= num_test_batch
        print('Test SNR', this_snr, 'with ber ', float(test_ber), 'with bler',
              float(test_bler))
        ber_res.append(float(test_ber))
        bler_res.append(float(test_bler))

    print('final results on SNRs ', snrs)
    print('BER', ber_res)
    print('BLER', bler_res)

    # compute adjusted SNR. (some quantization might make power!=1.0)
    enc_power = 0.0
    with torch.no_grad():
        for idx in range(num_test_batch):
            X_test = torch.randint(
                0,
                2, (args.batch_size, args.block_len, args.code_rate_k),
                dtype=torch.float)
            X_test = X_test.to(device)
            X_code = model.enc(X_test)
            enc_power += torch.std(X_code)
    enc_power /= float(num_test_batch)
    print('encoder power is', enc_power)
    adj_snrs = [snr_sigma2db(snr_db2sigma(item) / enc_power) for item in snrs]
    print('adjusted SNR should be', adj_snrs)
Exemple #2
0
def test(model, args, block_len='default', use_cuda=False):

    device = torch.device("cuda" if use_cuda else "cpu")
    model.eval()

    if block_len == 'default':
        block_len = args.block_len
    else:
        pass

    # Precomputes Norm Statistics.
    if args.precompute_norm_stats:
        with torch.no_grad():
            num_test_batch = int(args.num_block / (args.batch_size) *
                                 args.test_ratio)
            for batch_idx in range(num_test_batch):
                X_test = torch.randint(
                    0,
                    2, (args.batch_size, block_len, args.code_rate_k),
                    dtype=torch.float)
                X_test = X_test.to(device)
                _ = model.enc(X_test)
            print('Pre-computed norm statistics mean ', model.enc.mean_scalar,
                  'std ', model.enc.std_scalar)

    ber_res, bler_res = [], []
    ber_res_punc, bler_res_punc = [], []
    snr_interval = (args.snr_test_end -
                    args.snr_test_start) * 1.0 / (args.snr_points - 1)
    snrs = [
        snr_interval * item + args.snr_test_start
        for item in range(args.snr_points)
    ]
    print('SNRS', snrs)
    sigmas = snrs

    for sigma, this_snr in zip(sigmas, snrs):
        test_ber, test_bler = .0, .0
        with torch.no_grad():
            num_test_batch = int(args.num_block / (args.batch_size))
            for batch_idx in range(num_test_batch):
                X_test = torch.randint(
                    0,
                    2, (args.batch_size, block_len, args.code_rate_k),
                    dtype=torch.float)
                noise_shape = (args.batch_size,
                               int(args.block_len * args.code_rate_n /
                                   args.mod_rate), args.mod_rate)
                fwd_noise = generate_noise(noise_shape, args, test_sigma=sigma)

                X_test, fwd_noise = X_test.to(device), fwd_noise.to(device)

                X_hat_test, the_codes = model(X_test, fwd_noise)

                test_ber += errors_ber(X_hat_test, X_test)
                test_bler += errors_bler(X_hat_test, X_test)

                if batch_idx == 0:
                    test_pos_ber = errors_ber_pos(X_hat_test, X_test)
                    codes_power = code_power(the_codes)
                else:
                    test_pos_ber += errors_ber_pos(X_hat_test, X_test)
                    codes_power += code_power(the_codes)

            if args.print_pos_power:
                print('code power', codes_power / num_test_batch)
            if args.print_pos_ber:
                res_pos = test_pos_ber / num_test_batch
                res_pos_arg = np.array(res_pos.cpu()).argsort()[::-1]
                res_pos_arg = res_pos_arg.tolist()
                print('positional ber', res_pos)
                print('positional argmax', res_pos_arg)
            try:
                test_ber_punc, test_bler_punc = .0, .0
                for batch_idx in range(num_test_batch):
                    X_test = torch.randint(
                        0,
                        2, (args.batch_size, block_len, args.code_rate_k),
                        dtype=torch.float)
                    noise_shape = (args.batch_size,
                                   int(args.block_len * args.code_rate_n /
                                       args.mod_rate), args.mod_rate)
                    fwd_noise = generate_noise(noise_shape,
                                               args,
                                               test_sigma=sigma)
                    X_test, fwd_noise = X_test.to(device), fwd_noise.to(device)

                    X_hat_test, the_codes = model(X_test, fwd_noise)

                    test_ber_punc += errors_ber(
                        X_hat_test,
                        X_test,
                        positions=res_pos_arg[:args.num_ber_puncture])
                    test_bler_punc += errors_bler(
                        X_hat_test,
                        X_test,
                        positions=res_pos_arg[:args.num_ber_puncture])

                    if batch_idx == 0:
                        test_pos_ber = errors_ber_pos(X_hat_test, X_test)
                        codes_power = code_power(the_codes)
                    else:
                        test_pos_ber += errors_ber_pos(X_hat_test, X_test)
                        codes_power += code_power(the_codes)
            except:
                print('no pos BER specified.')

        test_ber /= num_test_batch
        test_bler /= num_test_batch
        print('Test SNR', this_snr, 'with ber ', float(test_ber), 'with bler',
              float(test_bler))
        ber_res.append(float(test_ber))
        bler_res.append(float(test_bler))

        try:
            test_ber_punc /= num_test_batch
            test_bler_punc /= num_test_batch
            print('Punctured Test SNR', this_snr, 'with ber ',
                  float(test_ber_punc), 'with bler', float(test_bler_punc))
            ber_res_punc.append(float(test_ber_punc))
            bler_res_punc.append(float(test_bler_punc))
        except:
            print('No puncturation is there.')

    print('final results on SNRs ', snrs)
    print('BER', ber_res)
    print('BLER', bler_res)
    print('final results on punctured SNRs ', snrs)
    print('BER', ber_res_punc)
    print('BLER', bler_res_punc)

    # compute adjusted SNR. (some quantization might make power!=1.0)
    enc_power = 0.0
    with torch.no_grad():
        for idx in range(num_test_batch):
            X_test = torch.randint(
                0,
                2, (args.batch_size, block_len, args.code_rate_k),
                dtype=torch.float)
            X_test = X_test.to(device)
            X_code = model.enc(X_test)
            enc_power += torch.std(X_code)
    enc_power /= float(num_test_batch)
    print('encoder power is', enc_power)
    adj_snrs = [snr_sigma2db(snr_db2sigma(item) / enc_power) for item in snrs]
    print('adjusted SNR should be', adj_snrs)