Exemple #1
0
    def cca_projection(self, X, Y, k=2):
        '''
		Return U_K^T, \Simgma_{XX}^{-1/2}
		'''

        ###SCALE AN IDENTITY MATRIX BY THIS TERM AND ADD TO COMPUTED COVARIANCE MATRIX TO PREVENT IT BEING SINGULAR ###
        reg = 1e-5

        Y = create_one_hot_label(Y, self.NUM_CLASSES)
        X, Y = subtract_mean_from_data(X, Y)

        cov_XX = compute_covariance_matrix(X, X)
        cov_XX = cov_XX + reg * np.identity(len(cov_XX))
        cov_XY = compute_covariance_matrix(X, Y)
        cov_YY = compute_covariance_matrix(Y, Y)
        cov_YY = cov_YY + reg * np.identity(len(cov_YY))

        left = sqrtm(inv(cov_XX))
        middle = cov_XY
        right = sqrtm(inv(cov_YY))

        m = left.dot(middle.dot(right))

        U, D, V = svd(m)
        return (U.T)[0:k], left
    def cca_projection(self, X, Y, k=2):
        '''
		Return U_K^T, \Simgma_{XX}^{-1/2}
		'''

        ###SCALE AN IDENTITY MATRIX BY THIS TERM AND ADD TO COMPUTED COVARIANCE MATRIX TO PREVENT IT BEING SINGULAR ###
        reg = 1e-5
        #number of classes for this part is 3
        y_one_hot = create_one_hot_label(Y, 3)
        #perform mean subtraction
        X_new, Y_new = subtract_mean_from_data(X, y_one_hot)
        m = X_new.shape[1]
        n = Y_new.shape[1]

        XX = compute_covariance_matrix(X_new, X_new)
        YY = compute_covariance_matrix(Y_new, Y_new)
        #compute the trace of each matrix
        XX += np.trace(XX)**reg**np.eye(m)
        YY += np.trace(YY)**reg**np.eye(n)
        #compute the inverses
        XX_inverse = inv(sqrtm(XX)).T
        YY_inverse = inv(sqrtm(YY)).T
        #correlation X and Y
        correlation_XY = np.dot(
            np.dot(X_new, XX_inverse).T, np.dot(Y_new, YY_inverse))
        #finally svd decomposition
        U, sigma, V = svd(correlation_XY)

        #first two columns only
        U = U[:, :3]
        return U.T, XX_inverse
Exemple #3
0
	def cca_projection(self,X,Y,k=2):

		'''
		Return U_K^T, \Simgma_{XX}^{-1/2}
		'''

		Y = create_one_hot_label(Y,self.NUM_CLASSES)
		X,Y = subtract_mean_from_data(X,Y)


		C_XY = compute_covariance_matrix(X,Y)
		C_XX = compute_covariance_matrix(X,X)
		C_YY = compute_covariance_matrix(Y,Y)

		dim_x = C_XX.shape[0]
		dim_y = C_YY.shape[0]

		A = inv(sqrtm(C_XX+1e-5*np.eye(dim_x)))
		B = inv(sqrtm(C_YY+1e-5*np.eye(dim_y)))


		C = np.matmul(A,np.matmul(C_XY,B))



		u,s,d = svd(C)

		return u[:,0:k].T, A
Exemple #4
0
 def cca_projection(self, X, Y, k=2):
     reg = 1e-5
     Y = np.array(Y)
     one_hot_y = create_one_hot_label(Y, self.NUM_CLASSES)
     X_bar = subtract_mean_from_data(X, Y)
     Y_bar = subtract_mean_from_data(one_hot_y, X)
     cov_XX = compute_covariance_matrix(X_bar[0], X_bar[0])
     cov_XX += np.identity(729) * (reg)
     cov_YY = compute_covariance_matrix(Y_bar[0], Y_bar[0])
     cov_XY = compute_covariance_matrix(X_bar[0], Y_bar[0])
     cov_XX_inv = inv(sqrtm(cov_XX))
     cov_YY_inv = inv(sqrtm(cov_YY))
     ccm = cov_XX_inv.dot(cov_XY).dot(cov_YY_inv)
     U, s, V = svd(ccm)
     return U.T[:k], cov_XX_inv
Exemple #5
0
    def pca_projection(self, X, Y):
        '''
		Return U_2^T
		'''
        X, Y = subtract_mean_from_data(X, Y)
        cov_X = compute_covariance_matrix(X, X)
        U, D, V = svd(cov_X)
        want = (U.T)[0:2]
        return want
Exemple #6
0
    def pca_projection(self, X, Y):
        '''
		Return U_2^T
		'''

        X, Y = subtract_mean_from_data(X, Y)

        C_XX = compute_covariance_matrix(X, X)

        u, s, d = svd(C_XX)

        return u[:, 0:2].T
    def pca_projection(self, X, Y):
        '''
        Return U_2^T
        '''
        Y = create_one_hot_label(Y, self.NUM_CLASSES)
        X, Y = subtract_mean_from_data(X, Y)

        C_XX = compute_covariance_matrix(X, X)

        u, s, d = svd(C_XX)

        return u[:, 0:2].T
	def train_model(self,X,Y): 
		''''
		FILL IN CODE TO TRAIN MODEL
		MAKE SURE TO ADD HYPERPARAMTER TO MODEL 

		'''
		X = np.array(X)
		Y = np.array(Y)
		self.mu = []
		for i in range(self.NUM_CLASSES) :
			index = Y == i
			n = sum(index)
			Xi = X[index,:]
			mean = np.mean(Xi, axis = 0)
			self.mu.append(mean)
			Xi_minus_mean = Xi - mean
			if i == 0 :
				self.cov = n * compute_covariance_matrix(Xi_minus_mean, Xi_minus_mean)
			else :
				self.cov += n * compute_covariance_matrix(Xi_minus_mean, Xi_minus_mean)

		self.cov = self.cov / X.shape[0]
    def pca_projection(self, X, Y):
        '''
		Return U_2^T
		'''
        Y_one_hot = create_one_hot_label(Y, 729)
        #perform mean subtraction
        X_new, Y_new = subtract_mean_from_data(X, Y_one_hot)
        #compute covariance matrix
        cov_matrix = compute_covariance_matrix(X_new, Y_new)
        #svd decomposition
        U, sigma, V_transpose = LA.svd(cov_matrix, full_matrices=False)

        return np.dot(U, np.dot(np.diag(sigma), V_transpose.T))
Exemple #10
0
	def train_model(self,X,Y): 
            """
            self.muj = []
            self.cov_XX = []
            X0 = X[:324]
            mu0 = np.mean(X0,axis=0)
            X1 = X[325:633]
            mu1 = np.mean(X1,axis=0)
            X2 = X[634:]
            mu2 = np.mean(X2,axis=0)
            self.muj.append(mu0)
            self.muj.append(mu1)
            self.muj.append(mu2)
            X_bar_0 = subtract_mean_from_data(X0, Y)
            X_bar_1 = subtract_mean_from_data(X1, Y)
            X_bar_2 = subtract_mean_from_data(X2, Y)
            self.cov_XX.append(compute_covariance_matrix(X_bar_0[0],X_bar_0[0])+np.identity(len(np.array(X0).T))*self.reg_cov)
            self.cov_XX.append(compute_covariance_matrix(X_bar_1[0],X_bar_1[0])+np.identity(len(np.array(X0).T))*self.reg_cov)
            self.cov_XX.append(compute_covariance_matrix(X_bar_2[0],X_bar_2[0])+np.identity(len(np.array(X0).T))*self.reg_cov)
            """
            self.muj = []
            self.cov_XX = []
            j = 0
            k = 0
            val = Y[0]
            for i in range(self.NUM_CLASSES):
                while(j<len(Y)-1 and val==Y[j]):
                    j = j + 1
                X0 = X[k:j-1]
                mu0 = np.mean(X0,axis=0)
                self.muj.append(mu0)
                X_bar_0 = subtract_mean_from_data(X0,Y)
                cov_XX_0 = compute_covariance_matrix(X_bar_0[0],X_bar_0[0]) + np.identity(len(np.array(X0).T))*self.reg_cov
                self.cov_XX.append(cov_XX_0)
                k = j
                val = Y[j]
Exemple #11
0
 def train_model(self, X, Y):
     """
         X_bar = subtract_mean_from_data(X,Y)
         cov_XX = compute_covariance_matrix(X_bar[0],X_bar[0])
         cov_XX += np.identity(len(np.array(X_bar).T)) * self.reg_cov
         self.cov_XX = cov_XX
         self.muj = []
         X0 = X[:324]
         mu0 = np.mean(X0,axis=0)
         print(mu0)
         X1 = X[325:633]
         mu1 = np.mean(X1,axis=0)
         X2 = X[634:]
         mu2 = np.mean(X2,axis=0)
         self.muj.append(mu0)
         self.muj.append(mu1)
         self.muj.append(mu2)
         
         """
     X_bar = subtract_mean_from_data(X, Y)
     cov_XX = compute_covariance_matrix(X_bar[0], X_bar[0])
     cov_XX += np.identity(len(np.array(X).T)) * self.reg_cov
     self.cov_XX = cov_XX
     self.muj = []
     j = 0
     k = 0
     val = Y[0]
     for i in range(self.NUM_CLASSES):
         print(i)
         while (j < len(Y) - 1 and val == Y[j]):
             j = j + 1
         X0 = X[k:j - 1]
         mu0 = np.mean(X0, axis=0)
         self.muj.append(mu0)
         k = j
         val = Y[j]
Exemple #12
0
 def pca_projection(self, X, Y):
     #mux = np.mean(X,axis=0)
     X_bar = subtract_mean_from_data(X, Y)
     cov_XX = compute_covariance_matrix(X_bar[0], X_bar[0])
     U, s, V = svd(cov_XX)
     return U.T[:2]