Exemple #1
0
    def train_generator(batch_size, init, events, controls):
        # Generator step
        hidden = model.init_to_hidden(init)
        event = model.get_primary_event(batch_size)
        outputs = []
        generated = []
        q_values = []

        for step in Bar('MC Rollout').iter(range(steps)):
            control = controls[step].unsqueeze(0) if use_control else None
            output, hidden = model.forward(event,
                                           control=control,
                                           hidden=hidden)
            outputs.append(output)
            probs = model.output_fc_activation(output / mc_sample_factor)
            generated.append(Categorical(probs).sample())

            with torch.no_grad():
                if step < steps - 1:
                    sequences = mc_rollout(generated, hidden, steps,
                                           controls[step + 1:])
                    mc_score = discriminator(sequences)  # [mcs * b]
                    mc_score = mc_score.view(mc_sample_size,
                                             batch_size)  # [mcs, b]
                    q_value = mc_score.mean(0, keepdim=True)  # [1, batch_size]

                else:
                    q_value = discriminator(torch.cat(generated, 0))
                    q_value = q_value.unsqueeze(0)  # [1, batch_size]

                q_values.append(q_value)

        # Compute loss
        q_values = torch.cat(q_values, 0)  # [steps, batch_size]
        q_mean = q_values.mean().detach()
        q_values = q_values - q_mean
        generated = torch.cat(generated, 0)  # [steps, batch_size]
        outputs = torch.cat(outputs, 0)  # [steps, batch_size, event_dim]
        loss = F.cross_entropy(outputs.view(-1, model.event_dim),
                               generated.view(-1),
                               reduce=False)
        loss = (loss * q_values.view(-1)).mean()

        # Backprop
        model.zero_grad()
        loss.backward()

        # Gradient clipping
        norm = utils.compute_gradient_norm(model.parameters())
        if model_gradient_clipping:
            nn.utils.clip_grad_norm_(model.parameters(),
                                     model_gradient_clipping)

        model_optimizer.step()

        q_mean = q_mean.item()
        norm = norm.item()
        return q_mean, norm
Exemple #2
0
    def train_discriminator(batch_size, init, events, controls):
        # Discriminator step
        with torch.no_grad():
            generated = model.generate(init,
                                       steps,
                                       None,
                                       controls,
                                       greedy=0,
                                       temperature=mc_sample_factor)

        fake_logit = discriminator(generated, output_logits=True)
        real_logit = discriminator(events, output_logits=True)
        fake_target = torch.zeros_like(fake_logit)
        real_target = torch.ones_like(real_logit)

        # Compute loss
        fake_loss = F.binary_cross_entropy_with_logits(fake_logit, fake_target)
        real_loss = F.binary_cross_entropy_with_logits(real_logit, real_target)
        loss = (real_loss + fake_loss) / 2

        # Backprop
        discriminator.zero_grad()
        loss.backward()

        # Gradient clipping
        norm = utils.compute_gradient_norm(discriminator.parameters())
        if discriminator_gradient_clipping:
            nn.utils.clip_grad_norm_(discriminator.parameters(),
                                     discriminator_gradient_clipping)

        discriminator_optimizer.step()

        real_loss = real_loss.item()
        fake_loss = fake_loss.item()
        loss = loss.item()
        norm = norm.item()
        return loss, real_loss, fake_loss, norm
Exemple #3
0
            controls = None

        init = torch.randn(batch_size, model.init_dim).to(device)
        outputs = model.generate(init,
                                 window_size,
                                 events=events[:-1],
                                 controls=controls,
                                 teacher_forcing_ratio=teacher_forcing_ratio,
                                 output_type='logit')
        assert outputs.shape[:2] == events.shape[:2]

        loss = loss_function(outputs.view(-1, event_dim), events.view(-1))
        model.zero_grad()
        loss.backward()

        norm = utils.compute_gradient_norm(model.parameters())
        nn.utils.clip_grad_norm_(model.parameters(), 1.0)

        optimizer.step()

        if enable_logging:
            writer.add_scalar('model/loss', loss.item(), iteration)
            writer.add_scalar('model/norm', norm.item(), iteration)

        print(f'iter {iteration}, loss: {loss.item()}')

        if time.time() - last_saving_time > saving_interval:
            save_model()
            last_saving_time = time.time()

except KeyboardInterrupt:
Exemple #4
0
def pretrain_discriminator(
        model_sess_path,  # load
        discriminator_sess_path,  # load + save
        batch_data_generator,  # Dataset(...).batches(...)
        discriminator_config_overwrite={},
        gradient_clipping=False,
        control_ratio=1.0,
        num_iter=-1,
        save_interval=60.0,
        discriminator_lr=0.001,
        enable_logging=False,
        auto_sample_factor=False,
        sample_factor=1.0):

    print('-' * 70)
    print('model_sess_path:', model_sess_path)
    print('discriminator_sess_path:', discriminator_sess_path)
    print('discriminator_config_overwrite:', discriminator_config_overwrite)
    print('sample_factor:', sample_factor)
    print('auto_sample_factor:', auto_sample_factor)
    print('discriminator_lr:', discriminator_lr)
    print('gradient_clipping:', gradient_clipping)
    print('control_ratio:', control_ratio)
    print('num_iter:', num_iter)
    print('save_interval:', save_interval)
    print('enable_logging:', enable_logging)
    print('-' * 70)

    # Load generator
    model_sess = torch.load(model_sess_path)
    model_config = model_sess['model_config']
    model = PerformanceRNN(**model_config).to(device)
    model.load_state_dict(model_sess['model_state'])

    print(f'Generator from "{model_sess_path}"')
    print(model)
    print('-' * 70)

    # Load discriminator and optimizer
    global discriminator_config
    try:
        discriminator_sess = torch.load(discriminator_sess_path)
        discriminator_config = discriminator_sess['discriminator_config']
        discriminator_state = discriminator_sess['discriminator_state']
        discriminator_optimizer_state = discriminator_sess[
            'discriminator_optimizer_state']
        print(f'Discriminator from "{discriminator_sess_path}"')
        discriminator_loaded = True
    except:
        print(f'New discriminator session at "{discriminator_sess_path}"')
        discriminator_config.update(discriminator_config_overwrite)
        discriminator_loaded = False

    discriminator = EventSequenceEncoder(**discriminator_config).to(device)
    optimizer = optim.Adam(discriminator.parameters(), lr=discriminator_lr)
    if discriminator_loaded:
        discriminator.load_state_dict(discriminator_state)
        optimizer.load_state_dict(discriminator_optimizer_state)

    print(discriminator)
    print(optimizer)
    print('-' * 70)

    def save_discriminator():
        print(f'Saving to "{discriminator_sess_path}"')
        torch.save(
            {
                'discriminator_config': discriminator_config,
                'discriminator_state': discriminator.state_dict(),
                'discriminator_optimizer_state': optimizer.state_dict()
            }, discriminator_sess_path)
        print('Done saving')

    # Disable gradient for generator
    for parameter in model.parameters():
        parameter.requires_grad_(False)

    model.eval()
    discriminator.train()

    loss_func = nn.BCEWithLogitsLoss()
    last_save_time = time.time()

    if enable_logging:
        from tensorboardX import SummaryWriter
        writer = SummaryWriter()

    try:
        for i, (events, controls) in enumerate(batch_data_generator):
            if i == num_iter:
                break

            steps, batch_size = events.shape

            # Prepare inputs
            events = torch.LongTensor(events).to(device)
            if np.random.random() <= control_ratio:
                controls = torch.FloatTensor(controls).to(device)
            else:
                controls = None

            init = torch.randn(batch_size, model.init_dim).to(device)

            # Predict for real event sequence
            real_events = events
            real_logit = discriminator(real_events, output_logits=True)
            real_target = torch.ones_like(real_logit).to(device)

            if auto_sample_factor:
                sample_factor = np.random.choice([
                    0.1, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 2.0,
                    4.0, 10.0
                ])

            # Predict for fake event sequence from the generator
            fake_events = model.generate(init,
                                         steps,
                                         None,
                                         controls,
                                         greedy=0,
                                         output_type='index',
                                         temperature=sample_factor)
            fake_logit = discriminator(fake_events, output_logits=True)
            fake_target = torch.zeros_like(fake_logit).to(device)

            # Compute loss
            loss = (loss_func(real_logit, real_target) +
                    loss_func(fake_logit, fake_target)) / 2

            # Backprop
            discriminator.zero_grad()
            loss.backward()

            # Gradient clipping
            norm = utils.compute_gradient_norm(discriminator.parameters())
            if gradient_clipping:
                nn.utils.clip_grad_norm_(discriminator.parameters(),
                                         gradient_clipping)

            optimizer.step()

            # Logging
            loss = loss.item()
            norm = norm.item()
            print(f'{i} loss: {loss}, norm: {norm}, sf: {sample_factor}')
            if enable_logging:
                writer.add_scalar(f'pretrain/D/loss/all', loss, i)
                writer.add_scalar(f'pretrain/D/loss/{sample_factor}', loss, i)
                writer.add_scalar(f'pretrain/D/norm/{sample_factor}', norm, i)

            if last_save_time + save_interval < time.time():
                last_save_time = time.time()
                save_discriminator()

    except KeyboardInterrupt:
        save_discriminator()