def __init__(self, input_shape, residual_shape, featmaps):
        super(ProjectionShortcut, self).__init__()
        self.input_shape = input_shape
        self.residual_shape = residual_shape

        [N_in, C_in, H_out, W_out] = residual_shape
        pH = compute_padding(H_out, input_shape[ROW_AXIS], 1, 2)
        pW = compute_padding(W_out, input_shape[COL_AXIS], 1, 2)
        convArgs_ = convArgs.copy()
        convArgs_['padding'] = (pH, pW)
        self.conv = ModelConv2D(in_channels=input_shape[CHANNEL_AXIS], out_channels=featmaps,
                                 kernel_size=(1, 1), stride=(2, 2), **convArgs_)
        self.output_shape = [N_in, C_in + self.conv.out_channels*n_divs, H_out, W_out]
Exemple #2
0
    def compute_premaster_secret(self,
                                 username,
                                 salt,
                                 verifier,
                                 client_A,
                                 scs=DEFAULT_SECRETSIZE):
        '''Calculates server premaster secret'''
        l = self.N.bit_length()
        padded_client_A = compute_padding(client_A, l)
        padded_server_B = compute_padding(self.B, l)
        u = obj_to_int(compute_hash(padded_client_A, padded_server_B))

        self.premaster_secret = pow(client_A * pow(verifier, u, self.N),
                                    self.b, self.N)
        return self.premaster_secret
    def __init__(self, input_shape, filter_size, featmaps, shortcut, convArgs, bnArgs, actArgs):
        super(ResidualBlock, self).__init__()
        self.input_shape = input_shape
        self.featmaps = featmaps
        self.shortcut_type = shortcut
        pad_type = convArgs['padding']
        convArgs_ = convArgs.copy()
        [N_in, num_features1, H_in, W_in] = input_shape
        if opts.use_group_norm:
            self.bn1 = GroupNormBlock(num_channels=num_features1)
        else:
            self.bn1 = ModelBN(num_features=num_features1, **bnArgs)

        self.act = Activation(actArgs['activation'])

        if self.shortcut_type == 'regular':
            convArgs_['padding'] = (1, 1) if pad_type is 'same' else (0, 0)
            stride = (1, 1)
            H_out = H_in
            W_out = W_in
        elif self.shortcut_type == 'projection':
            H_out = int(np.ceil(H_in / 2))
            W_out = int(np.ceil(W_in / 2))
            pH = compute_padding(H_out, H_in, filter_size[0], 2)
            pW = compute_padding(W_out, W_in, filter_size[-1], 2)
            convArgs_['padding'] = (pH, pW)
            stride = (2, 2)
        self.conv1 = ModelConv2D(in_channels=num_features1, out_channels=featmaps,
                                 kernel_size=filter_size, stride=stride, **convArgs_)

        # self.bn2 = ModelBN(num_features=self.conv1.out_channels*n_divs, **bnArgs)
        if opts.use_group_norm:
            self.bn2 = GroupNormBlock(num_channels=self.conv1.out_channels*n_divs)
        else:
            self.bn2 = ModelBN(num_features=self.conv1.out_channels*n_divs, **bnArgs)
        convArgs_['padding'] = (1, 1) if pad_type is 'same' else (0, 0)
        self.conv2 = ModelConv2D(in_channels=self.conv1.out_channels * n_divs, out_channels=featmaps,
                                 kernel_size=filter_size, stride=(1, 1), **convArgs_)
        residual_shape = [N_in, featmaps, H_out, W_out]

        if shortcut == 'regular':
            self.shortcut = IdentityShortcut(input_shape, residual_shape)
        elif shortcut == 'projection':
            self.shortcut = ProjectionShortcut(input_shape, residual_shape, featmaps)
        self.output_shape = self.shortcut.output_shape
        self.residual_shape = residual_shape
Exemple #4
0
    def compute_premaster_secret(self, salt, server_B):
        '''Calculates client premaster secret'''
        server_B = obj_to_int(server_B)
        l = self.N.bit_length()

        padded_client_A = compute_padding(self.A, l)
        padded_server_B = compute_padding(server_B, l)

        u = obj_to_int(compute_hash(padded_client_A, padded_server_B))
        x = self._compute_x(salt, self.username, self.password)

        padded_g = compute_padding(self.g, l)
        k = obj_to_int(compute_hash(self.N, padded_g))

        t1 = server_B - k * pow(self.g, x, self.N)
        t2 = self.a + u * x
        self.premaster_secret = pow(t1, t2, self.N)
        return self.premaster_secret
Exemple #5
0
    def compute_server_values(self,
                              username,
                              verifier,
                              byte_size=DEFAULT_SECRETSIZE):
        '''Calculates server values'''
        l = self.N.bit_length()

        self.b = obj_to_int(get_randombytes(byte_size))
        k = obj_to_int(compute_hash(self.N, compute_padding(self.g, l)))

        self.B = (k * verifier + pow(self.g, self.b, self.N)) % self.N
        return self.B
    def __init__(self, input_shape, featmaps, filter_size, actArgs, bnArgs, block_i=1):
        super(LearnVectorBlock, self).__init__()
        self.block_i = block_i
        self.input_shape = input_shape
        [_, num_features1, H_in, W_in] = input_shape
        out_channels = featmaps

        self.bn1 = BatchNorm2d(num_features=num_features1, **bnArgs)
        self.act = Activation(**actArgs)

        in_channels1 = self.bn1.num_features
        pH = compute_padding(H_in, H_in, filter_size[0], 1)
        pW = compute_padding(W_in, W_in, filter_size[-1], 1)
        padding1 = (pH, pW)
        self.conv1 = Conv2d(in_channels=in_channels1, out_channels=featmaps, kernel_size=filter_size,
                            bias=False, padding=padding1)

        in_channels2 = self.conv1.out_channels
        self.bn2 = BatchNorm2d(num_features=in_channels2, **bnArgs)

        self.conv2 = Conv2d(in_channels=in_channels2, out_channels=featmaps, kernel_size=filter_size,
                            bias=False, padding=padding1)
        self.output_shape = [None, featmaps, H_in, W_in]
Exemple #7
0
    def compute_premaster_secret(self, salt, server_B):
        '''
		Calculates client premaster secret
        u = SHA1(PAD(A) | PAD(B))
        k = SHA1(N | PAD(g))
        x = SHA1(s | SHA1(I | ":" | P))
        <premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
		'''
        server_B = obj_to_int(server_B)
        l = self.N.bit_length()

        padded_client_A = compute_padding(self.A, l)
        padded_server_B = compute_padding(server_B, l)

        u = obj_to_int(compute_hash(padded_client_A, padded_server_B))
        x = self._compute_x(salt, self.username, self.password)

        padded_g = compute_padding(self.g, l)
        k = obj_to_int(compute_hash(self.N, padded_g))

        t1 = server_B - k * pow(self.g, x, self.N)
        t2 = self.a + u * x
        self.premaster_secret = pow(t1, t2, self.N)
        return self.premaster_secret