Exemple #1
0
 def _plot_comm(self,
                data,
                parallel_key,
                figure,
                color='teal',
                offset=0.0,
                label='',
                marker='o'):
     if parallel_key not in data:
         return
     xs, ys, lowers, uppers = [], [], [], []
     for cores, v_ in data[parallel_key].items():
         xs.append(int(cores) + offset)
         sums = list(map(lambda wt: np.sum(np.array(wt[1:])), v_['comm']))
         mean = np.mean(sums)
         ys.append(mean)
         lower, upper = conf_95_mean(sums)
         lowers.append(mean - lower)
         uppers.append(upper - mean)
     ys = [y for _, y in sorted(zip(xs, ys))]
     lowers = [l for _, l in sorted(zip(xs, lowers))]
     uppers = [u for _, u in sorted(zip(xs, uppers))]
     xs = sorted(xs)
     figure.errorbar(xs,
                     ys,
                     yerr=[lowers, uppers],
                     fmt=marker,
                     markerfacecolor='none',
                     color=color,
                     label=label,
                     mew=MEW,
                     ms=MS)
     figure.plot(xs, ys, '-', alpha=0.5, linewidth=0.5, color=color)
Exemple #2
0
 def _plot_speedup(self,
                   data,
                   parallel_key,
                   figure,
                   color='teal',
                   marker='o',
                   offset=0.0,
                   plotline=True,
                   legend=''):
     if parallel_key not in data:
         return
     xs, ys, lowers, uppers = [], [], [], []
     if 'seq' in data:
         sequential = np.array(data['seq']['time']).flatten()
         for cores, v_ in data[parallel_key].items():
             xs.append(int(cores))
             parallel = []
             for times in v_['time']:
                 parallel.append(np.mean(times))
             speedup = sequential / parallel
             mean_speedup = np.mean(speedup)
             ys.append(mean_speedup)
             lower, upper = conf_95_mean(speedup)
             lowers.append(mean_speedup - lower)
             uppers.append(upper - mean_speedup)
         ys = [y for _, y in sorted(zip(xs, ys))]
         xs = sorted(xs)
         xs = list(map(lambda x: float(x) + offset, xs))
         if legend == '':
             figure.errorbar(xs,
                             ys,
                             yerr=[lowers, uppers],
                             fmt=marker,
                             markerfacecolor='none',
                             color=color,
                             mew=MEW,
                             ms=MS)
         else:
             figure.errorbar(xs,
                             ys,
                             yerr=[lowers, uppers],
                             fmt=marker,
                             markerfacecolor='none',
                             color=color,
                             label=legend,
                             mew=MEW,
                             ms=MS)
         plt.plot(xs, ys, '-', alpha=0.5, linewidth=0.5, color=color)
         if plotline:
             plt.plot([0, max(xs)], [0, max(xs)],
                      '-',
                      color='black',
                      label='Linear Speedup')
     else:
         print('could not solve {} sequentially within '
               'timeout...'.format(legend))
Exemple #3
0
 def _plot_runtime(self,
                   data,
                   parallel_key,
                   figure,
                   color='teal',
                   offset=0.0,
                   marker='o',
                   legend=''):
     if parallel_key not in data:
         return
     xs, ys, lowers, uppers = [], [], [], []
     if 'seq' in data:
         xs.append(1 + offset)
         mean = np.mean(np.array(data['seq']['time']).flatten())
         ys.append(mean)
         lower, upper = conf_95_mean(
             np.array(data['seq']['time']).flatten())
         lowers.append(mean - lower)
         uppers.append(upper - mean)
         print('{} sequential runtime: {} +{} -{}'.format(
             legend, mean, upper - mean, mean - lower))
     for cores, v_ in data[parallel_key].items():
         xs.append(int(cores))
         mean = np.mean(np.array(v_['time']).flatten())
         ys.append(mean)
         lower, upper = conf_95_mean(np.array(v_['time']).flatten())
         lowers.append(mean - lower)
         uppers.append(upper - mean)
     ys = [y for _, y in sorted(zip(xs, ys))]
     xs = sorted(xs)
     figure.errorbar(xs,
                     ys,
                     yerr=[lowers, uppers],
                     fmt=marker,
                     markerfacecolor='none',
                     color=color,
                     label=legend,
                     mew=MEW,
                     ms=MS)
     plt.plot(xs, ys, '-', alpha=0.5, linewidth=0.5, color=color)
Exemple #4
0
 def _plot_scatter(self):
     markers ={'DPLL': 'o', 'CDCL': 'D'}
     color = {'DPLL': 'firebrick', 'CDCL': 'teal'}
     offsets = {'DPLL': 0.1, 'CDCL': -0.1}
     x_ticks = []
     plt.figure(figsize=(6, 3.4))
     xs = []
     for s in ['DPLL', 'CDCL']:
         xs = []
         ys = []
         lower_error = []
         upper_error = []
         i = 0
         for k, v in self.data[s].iteritems():
             if 'ais8.cnf' in k:
                 continue
             data = []
             for t in v['time']:
                 data.append(np.array(t)/1000)
             xs.append(i + offsets[s])
             mean = np.mean(data)
             ys.append(mean)
             lower, upper = conf_95_mean(data)
             lower = mean - lower
             upper = upper - mean
             if s == 'CDCL':
                 print('formula {} CDCL time: {} - {} + {}'.format(k,
                                                                   mean,
                                                                   lower,
                                                                   upper))
             lower_error.append(lower)
             upper_error.append(upper)
             if s == 'DPLL':
                 x_ticks.append(k.split('/')[-1].replace('.cnf', ''))
             i = i+1
         plt.errorbar(xs, ys,
                      yerr=[lower_error, upper_error],
                      label=s,
                      fmt=markers[s],
                      color=color[s],
                      markerfacecolor='none',
                      mew=MEW, ms=MS)
     plt.xticks(xs, x_ticks, rotation=45, ha='right')
     plt.title('DPLL vs CDCL')
     plt.ylabel('Avg. runtime [s]\nwith 95% conf. intervals')
     plt.legend(loc=2)
     self._default_plt_postprocessing()
     f = '../../report/figures/dpll_vs_cdcl.pdf'
     plt.savefig(f, format='pdf')
     f = '../../report/figures/dpll_vs_cdcl.png'
     plt.savefig(f, format='png')
     plt.show()
 def plot(self):
     markers = ['o', 'D']
     color = ['firebrick', 'teal']
     i = 0
     x_offsets = {}
     for s in EXECUTABLES:
         x_offsets = {}
         xs = []
         ys = []
         lower_error = []
         upper_error = []
         for k, v in self.data[s].iteritems():
             info = Info(**v['info'])
             data = []
             for t in v['time']:
                 data.append(t)
             if info.variables not in x_offsets:
                 x_offsets[info.variables] = -2.5
             x_offsets[info.variables] = x_offsets[info.variables] + 0.5
             xs.append(info.variables + x_offsets[info.variables])
             data1 = []
             for d in data:
                 data1.append(np.mean(d))
             mean = np.mean(data1)
             ys.append(mean)
             lower, upper = conf_95_mean(data1)
             lower_error.append(mean - lower)
             upper_error.append(upper - mean)
         plt.errorbar(xs,
                      ys,
                      yerr=[lower_error, upper_error],
                      label=s,
                      fmt=markers[i],
                      color=color[i],
                      markerfacecolor='none')
         i = i + 1
     plt.xticks(x_offsets.keys(), x_offsets.keys())
     plt.title(
         'Stealing vs Master-Worker, mean runtime with 95% confidence interval'
     )
     plt.xlabel(
         'Approximate formula difficulty [formula size: number of variables]'
     )
     plt.ylabel('Runtime [ms]')
     plt.legend(loc=2)
     plt.show()
Exemple #6
0
 def find_best_runtime(self, files):
     for f in range(len(files)):
         data = self.data[files[f]]
         best_config = 'none'
         m = 1000000000
         for p in ['parallel', 'stealing']:
             if p in data:
                 for n, d in data[p].items():
                     times = d['time']
                     means = list(map(lambda t: np.mean(t), times))
                     mean = np.mean(means)
                     lower, upper = conf_95_mean(means)
                     lower = mean - lower
                     upper = upper - mean
                     if mean < m:
                         m = mean
                         best_config = '{} on {} nodes, time: {} -{} +{}'.format(
                             p, n, mean, lower, upper)
         print('formula {} best: {}'.format(files[f], best_config))
Exemple #7
0
        colors['parallel'] = ['teal', 'teal']
        offset = {}
        offset['parallel'] = -0.6
        offset['stealing'] = 0

        for type in ['parallel', 'stealing']:
            lower_error = []
            upper_error = []
            ys = []
            xs = []
            for data in case[type]['x']:
                xs.append(data + offset[type])
            for data in case[type]['y']:
                mean = np.mean(data)
                ys.append(mean)
                lower, upper = conf_95_mean(data)
                lower_error.append(mean-lower)
                upper_error.append(upper-mean)
            plt.errorbar(xs, ys,
                    yerr=[lower_error, upper_error],
                    #label='{} version'.format(type),
                    fmt='D',
                    color=colors[type][1],
                    linewidth=1,
                    markerfacecolor='none')
            
            plt.plot(xs, ys, '--', color=colors[type][1], label='{} version'.format(type), linewidth=1)

        plt.title(title)
        plt.xlabel('# cores')
        plt.ylabel(ylabel);