def demo_test(args): if args.doc: args = config_loader(args.doc, args) # config # model_config(args, save=False) # print model configuration of evaluation # set cuda torch.cuda.set_device(args.gpu_id) # model model = model_builder(args.model_name, args.scale, **args.model_args).cuda() # criteriohn criterion = criterion_builder(args.criterion) # dataset test_set = AxisDataSet(args.test_path, args.target_path) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, # pin_memory=True, pin_memory=False, ) # test test(model, test_loader, criterion, args)
def model_env(args): """building model environment avoiding to instantiate model. Args: args : model arguments which is control by demo_utils.argument_setting Returns: model (torch.nn): build model in cuda device criterion(torch.nn): build criterion. Default to mse loss extractor(torch.nn): build vgg content loss in cuda device """ if args.doc: args = config_loader(args.doc, args) # set cuda device torch.cuda.set_device(args.gpu_id) # model version control version = args.load if type(args.load) is int else 0 # model path and parameter model_path = os.path.join( args.log_path, args.model_name, f'version_{version}',f'{args.model_name}_{args.scale}x.pt') checkpoint = torch.load(model_path, map_location=f'cuda:{args.gpu_id}') # loading model model = model_builder(args.model_name, args.scale, **args.model_args).cuda() model.load_state_dict(checkpoint['state_dict']) # build criterion criterion = criterion_builder(args.criterion) # loading feature extractor extractor = FeatureExtractor().cuda() if args.content_loss else None return model, criterion, extractor
import uuid import json import time import traceback """ Note: Adding eventlet and monkey_patching it to ensure that emit messages are not accumulated and sent out in bursts """ import eventlet eventlet.monkey_patch() """ Load config """ config = config_loader() app = Flask(__name__) socketio = SocketIO(app) @socketio.on('authenticate') def handle_authenticate(args): """ Handles authentication for a particular API_KEY and challenge_id pair Request Params: API_KEY : String Holds the API Key of the participant challenge_id : String
'state_dict': model.state_dict(), 'epoch': epoch, 'train_iter': checkpoint['train_iter'], 'valid_iter': checkpoint['valid_iter'], }, model_path) writer.close() if __name__ == '__main__': # argument setting train_args = train_argument() # replace args by document file if train_args.doc: train_args = config_loader(train_args.doc, train_args) # set cuda torch.cuda.set_device(train_args.gpu_id) # model model = model_builder(train_args.model_name, train_args.scale, **train_args.model_args).cuda() # optimizer and critera optimizer = optimizer_builder(train_args.optim) # optimizer class optimizer = optimizer( # optmizer instance model.parameters(), lr=train_args.lr, weight_decay=train_args.weight_decay) criterion = criterion_builder(train_args.criterion)
content_loss = args.beta * criterion(gen_feature, real_feature) # for compatible loss = content_loss + mse_loss err += loss.sum().item() * inputs.size(0) err /= len(test_loader.dataset) print(f'test error:{err:.4f}') if __name__ == '__main__': # argument setting test_args = test_argument() if test_args.doc: test_args = config_loader(test_args.doc, test_args) # config model_config(test_args, save=False) # print model configuration of evaluation # set cuda torch.cuda.set_device(test_args.gpu_id) # model model = model_builder(test_args.model_name, test_args.scale, **test_args.model_args).cuda() # criteriohn criterion = criterion_builder(test_args.criterion) # optimizer = None # don't need optimizer in test
def __init__(self): self.clean = Clean() self.despesas_getter = Despesas() self.config = config_loader('configuration.yaml') self.data = self.get_data()
def __init__(self): self.config = config_loader('configuration.yaml')
def __init__(self, data: Optional[datetime] = None): self.data = data if data else datetime.today() self.config = config_loader('configuration.yaml')