Exemple #1
0
def template_match(image, path):

    template = cv2.imread(path, cv2.COLOR_BGR2GRAY)
    template = convert_to_binary_and_invert(template)

    if (image.shape[0] < template.shape[0]
            or image.shape[1] < template.shape[1]):
        return [], 0

    img = image.copy()
    w, h = template.shape[::-1]
    recv2.lines = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
    threshold = 0.65
    loc = np.where(res >= threshold)
    # print("template width", template.shape[1])
    points = []
    for pt in zip(*loc[::-1]):
        if (len(points) > 0):
            if (pt[0] - points[-1] < template.shape[1]):
                print("here")
                continue

        # cv2.line(img, (pt[0], 0), (pt[0], img.shape[0]), (255, 255, 255), 1)
        # cv2.line(img, (pt[0] + template.shape[1], 0), (pt[0] + template.shape[1], img.shape[0]), (255, 255, 255), 1) # noqa

        # cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (255, 255, 255), 2)
        points.append(pt[0])
        # display_image('res.png', img)

    return points, template.shape[1]
def process_image(line_segmets_path, input_path, f, acc_char_map, train):
    image = cv2.imread(os.path.join(input_path, f))
    # display_image("source", image)
    start_time = time.time()

    processed_image = convert_to_binary_and_invert(image)
    processed_image = deskew(processed_image)

    # display_image("after deskew", processed_image)
    # cv2.imwrite("binary.png", processed_image)
    line_segmets_path = os.path.join(line_segmets_path, f[:-4])

    lines = segment_lines(processed_image, line_segmets_path, 0)
    curr_ww, curr_tw, acc_char_map, end_time = segment_words(
        lines, line_segmets_path, f, input_path, train, acc_char_map)  # noqa

    if (train):
        print(f'we got {curr_ww} wrong out of {curr_tw}')
    return curr_ww, curr_tw, acc_char_map, end_time - start_time
Exemple #3
0
                    default="./segmented_lines")
    ap.add_argument("-i",
                    "--input-path",
                    required=False,
                    help="path to line segments file",
                    default="./inputs")

    args = vars(ap.parse_args())
    print(args)
    input_path = args["input_path"]
    line_segmets_path = args["line_segments_path"]

    image = cv2.imread("./segmented_lines/csep1622/segment_1/segment_41.png")
    display_image("source", image)

    processed_image = convert_to_binary_and_invert(image)

    # cv2.imwrite("binary.png", processed_image)
    image = processed_image.copy()  # original copy of the image
    img_line = processed_image.copy()

    edged = processed_image
    # cv2.imwrite("img_cnt.png", edged)

    hp = get_horizontal_projection(edged)
    baseline = get_baseline_y_coord(get_horizontal_projection(processed_image))

    print("now baseline is: ", baseline)
    h, w = processed_image.shape
    cv2.line(img_line, (0, baseline), (w, baseline), (255, 255, 255), 1)
    # cv2.imwrite("baseline.png", img_line)
def segment_words(path):
    """
    this function keeps the list of word separatation points in word_separation list
    but segments into sub words and saves the sub words segements in their designated directory
    """
    files = [
        f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))
    ]
    image = cv2.imread(os.path.join(path, files[0]))
    directory_name = path + "/" + files[0][:-4]

    if os.path.exists(directory_name):
        shutil.rmtree(directory_name)
    os.makedirs(directory_name)

    original_image = image.copy()
    image = convert_to_binary_and_invert(image)
    # image_with_line = image.copy()

    (h, w) = image.shape

    # image_with_line = cv2.dilate(image, np.ones((2, 2), np.uint8), iterations=1)  # needs some tuning
    horizontal_projection = get_horizontal_projection(image)
    baseline_y_coord = get_baseline_y_coord(horizontal_projection)
    # cv2.line(image_with_line, (0, baseline_y_coord), (w, baseline_y_coord), (255, 255, 255), 1)

    # display_image("image without dotting", image_without_dotting)
    vertical_projection = get_vertical_projection(image)

    print("shape of vertical projections is: ", len(vertical_projection))

    x, count = 0, 0
    is_space = False
    xcoords = []
    distances = []

    for i in range(w):
        if not is_space:
            if vertical_projection[i] == 0:
                is_space = True
                count = 1
                x = i

        else:
            if vertical_projection[i] > 0:
                is_space = False
                xcoords.append(x / count)
                distances.append(count)

            else:
                x += i
                count += 1

    distance = get_distance_between_words(distances)

    previous_width = 0
    word_separation = xcoords.copy()
    print(len(word_separation))
    for i in range(len(xcoords)):
        if i == 0:
            previous_width = int(xcoords[i])
            continue

        if distances[i - 1] >= distance:
            pass
            # cv2.line(image, (previous_width, 0), (previous_width, h), (255, 255, 255), 1)
        else:
            # print(i)
            word_separation[i - 1] = -1
        sub_word = original_image[:, previous_width:int(xcoords[i])]
        cv2.imwrite(directory_name + "/" + "segment_" + str(i) + ".png",
                    sub_word)
        # display_image("sub word", sub_word)
        previous_width = int(xcoords[i])

    if distances[-2] < distance:
        word_separation[-2] = -1

    sub_word = original_image[:, int(xcoords[-1]):w]
    cv2.imwrite(directory_name + "/" + "segment_" + str(len(xcoords)) + ".png",
                sub_word)
    display_image("sub word", sub_word)

    print("word sep: ", word_separation)

    previous_width = 0
    sub_seg_points = []
    # word_separation = list(filter(lambda a: a != -1, word_separation))
    flag = False
    for i in range(len(word_separation)):

        if word_separation[i] == -1 and flag == False:

            flag = True
            sub_seg_points = []
            sub_seg_points.append(xcoords[i - 1])
            # sub_seg_points.append(xcoords[i])

        if word_separation[i] == -1 and flag:
            sub_seg_points.append(xcoords[i])

        if word_separation[i] != -1 and flag:
            sub_seg_points.append(xcoords[i])
            flag = False
            print("sub seg: ", sub_seg_points)
            sub_image = image[:,
                              int(sub_seg_points[0]):int(sub_seg_points[-1])]
            display_image("duh", sub_image)
            for i in range(1, len(sub_seg_points) - 1):
                cv2.line(image, (int(sub_seg_points[i]), 0),
                         (int(sub_seg_points[i]), h), (255, 255, 255), 1)
            display_image("display", image)

        previous_width = int(word_separation[i])

    cv2.line(image, (int(xcoords[-1]), 0), (int(xcoords[-1]), h),
             (255, 255, 255), 1)

    print("word: ", word_separation)
    print("xcoord: ", xcoords)
    display_image("final output", image)
    cv2.imwrite("dis.png", image)