def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ # only allow print-outs if execution has no repetitions allow_print = args['repetitions'] == 1 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset(args['dataset_choice'], cls_target, args['batch_size']) print('\n\tTask: Classify «{}» using «{}»\n'.format( cls_str, d['data_str'])) print_dataset_info(d) # build and train inputs = Input(shape=(7810, )) models = [ build_model(i, d['num_classes'], inputs=inputs) for i in range(args['num_models']) ] # combine outputs of all models y = Average()([m.outputs[0] for m in models]) model = Model(inputs, outputs=y, name='multiple') model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) if allow_print: model.summary() print('') plot_model(model, to_file='img/multiple_mlp.png') model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], verbose=1, class_weight=d['class_weights']) # evaluation model print('Evaluate ...') model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) # predict on testset and calculate classification report and confusion matrix for diagnosis print('Test ...') pred = model.predict(d['test_data'], steps=d['test_steps']) if allow_print: diagnose_output(d['test_labels'], pred.argmax(axis=1), d['classes_trans']) return balanced_accuracy_score(d['test_labels'], pred.argmax(axis=1))
def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ # only allow print-outs if execution has no repetitions allow_print = args['repetitions'] == 1 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset(args['dataset_choice'], cls_target, args['batch_size'], train_shuffle_repeat=False, categorical_labels=False) print('\n\tTask: Classify «{}» using «{}» with DecisionTreeClassifier\n'. format(cls_str, d['data_str'])) print_dataset_info(d) model = DecisionTreeClassifier(class_weight='balanced') # empty train data generator into list, then train. Careful with RAM train_data = [ sample for batch in tqdm( d['train_data'], total=d['train_steps'], desc='prep_train') for sample in batch[0] ] model.fit(train_data, d['train_labels']) del train_data # predict on testset and calculate classification report and confusion matrix for diagnosis test_data = [ sample for batch in tqdm( d['test_data'], total=d['test_steps'], desc='prep_test') for sample in batch[0] ] pred = model.predict(test_data) del test_data if allow_print: # visualise decision tree, from datacamp.com/community/tutorials/decision-tree-classification-python dot_data = StringIO() export_graphviz(model, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_pdf('img/decision_tree.pdf') diagnose_output(d['test_labels'], pred, d['classes_trans']) return balanced_accuracy_score(d['test_labels'], pred)
def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ # only allow print-outs if execution has no repetitions allow_print = args['repetitions'] == 1 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset(args['dataset_choice'], cls_target, args['batch_size'], args['norm_choice']) print('\n\tTask: Classify «{}» using «{}»\n'.format( cls_str, d['data_str'])) print_dataset_info(d) model = build_model(0, d['num_classes'], name='baseline_mlp', new_input=True) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) if allow_print: model.summary() print('') # callback to log data for TensorBoard # tb_callback = TensorBoard(log_dir='./results', histogram_freq=0, write_graph=True, write_images=True) # train and evaluate model.fit( d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], # callbacks=[tb_callback], verbose=1, class_weight=d['class_weights']) model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) # predict on testset and calculate classification report and confusion matrix for diagnosis pred = model.predict(d['test_data'], steps=d['test_steps']) if allow_print: diagnose_output(d['test_labels'], pred.argmax(axis=1), d['classes_trans']) return balanced_accuracy_score(d['test_labels'], pred.argmax(axis=1))
def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ batch_size = 64 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset(args['dataset_choice'], cls_target, batch_size) print('\n\tTask: Classify «{}» using «{}»\n'.format( cls_str, d['data_str'])) print_dataset_info(d) model = build_model(0, d['num_classes'], name='baseline_mlp', new_input=True) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # train and evaluate model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], verbose=1, class_weight=d['class_weights']) print('Evaluate ...') model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) # predict on testset and calculate classification report and confusion matrix for diagnosis print('Test ...') pred = model.predict(d['test_data'], steps=d['test_steps']) diagnose_output(d['test_labels'], pred.argmax(axis=1), d['classes_trans'])
def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ # only allow print-outs if execution has no repetitions allow_print = args['repetitions'] == 1 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset(0, cls_target, args['batch_size'], args['norm_choice']) print('\n\tTask: Classify «{}» using «{}»'.format(cls_str, d['data_str'])) print_dataset_info(d) model = build_model(0, d['num_classes'], name='baseline_mlp', new_input=True) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # train and evaluate - pre-transfer model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], verbose=1, class_weight=d['class_weights']) print('Evaluate ...') model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) del d d = prepare_dataset( 1, # HH12 cls_target, args['batch_size'], args['norm_choice']) print_dataset_info(d) # make layers untrainable and remove classification layer, then train new last layer on handheld data for l in model.layers[:-1]: l.trainable = False if allow_print: plot_model(model, to_file='img/transfer_mlp_pre.png') new_layer = Dense(d['num_classes'], activation='softmax', name='dense_transfer')(model.layers[-2].output) model = Model(inputs=model.inputs, outputs=new_layer, name='transfer_model') model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) if allow_print: model.summary() print('') plot_model(model, to_file='img/transfer_mlp_post.png') # train and evaluate - post-transfer model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'] * 2, verbose=1, class_weight=d['class_weights']) print('Evaluate ...') model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) # predict on testset and calculate classification report and confusion matrix for diagnosis print('Test ...') pred = model.predict(d['test_data'], steps=d['test_steps']) diagnose_output( d['test_labels'], pred.argmax(axis=1), d['classes_trans'], show=False, file_name= f'heatmap_transfer_{datetime.now().hour}_{datetime.now().minute}') return balanced_accuracy_score(d['test_labels'], pred.argmax(axis=1))
def classify(**args): """ Main method that prepares dataset, builds model, executes training and displays results. :param args: keyword arguments passed from cli parser """ # only allow print-outs if execution has no repetitions allow_print = args['repetitions'] == 1 # determine classification targets and parameters to construct datasets properly cls_target, cls_str = set_classification_targets(args['cls_choice']) d = prepare_dataset( 0, # any synthetic cls_target, args['batch_size']) print('\n\tTask: Classify «{}» using «{}»\n'.format( cls_str, d['data_str'])) print_dataset_info(d) model = build_model(1, d['num_classes'], name='concat_mlp', new_input=True) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) if allow_print: model.summary() plot_model(model, to_file='img/concat_mlp.png') # train and evaluate model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], verbose=1, class_weight=d['class_weights']) model.evaluate(d['eval_data'], steps=d['test_steps'], verbose=1) del d # load handheld dataset for evaluation d = prepare_dataset( 2, # any handheld cls_target, args['batch_size']) print_dataset_info(d) # build model for handheld data, concatenates the output of the last pre-classification layer of the synthetic network concat_model = build_model_concat(2, d['num_classes'], concat_model=model) concat_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) if allow_print: concat_model.summary() plot_model(concat_model, to_file='img/concat_mlp.png') concat_model.fit(d['train_data'], steps_per_epoch=d['train_steps'], epochs=args['epochs'], verbose=1, class_weight=d['class_weights']) # predict on test set and calculate classification report and confusion matrix for diagnosis pred = model.predict(d['test_data'], steps=d['test_steps']) if allow_print: diagnose_output(d['test_labels'], pred.argmax(axis=1), d['classes_trans']) return balanced_accuracy_score(d['test_labels'], pred.argmax(axis=1))