Exemple #1
0
def main():
    user_home = os.environ.get('HOME', '')
    echo_path = f"{user_home}/.echo"
    ensure_path_exists(echo_path)

    while True:
        try:
            user_input = prompt(
                'echo==> ',
                history=FileHistory(f'{echo_path}/echo-history'),
                auto_suggest=AutoSuggestFromHistory())
            process_input(user_input)
        except KeyboardInterrupt:
            exit(0)
Exemple #2
0
    MODEL = get_model_config(NETWORK_KEY, glove=USE_GLOVE)
    PREPROCESSING_ALGORITHM = get_preprocessing_algorithm(
        PREPROCESSING_ALGORITHM_ID)

    if USE_GLOVE:
        MODEL['GLOVE'] = {'SIZE': 200}
        GLOVE = f'glove.twitter.27B.{MODEL["GLOVE"]["SIZE"]}d.txt'
        GLOVE_FILE_PATH = f'./data/glove/{GLOVE}'
        GLOVE_EMBEDDINGS = get_glove_embeddings(GLOVE_FILE_PATH)

    MODEL['UUID'] = str(uuid.uuid4())
    MODEL['PREPROCESSING_ALGORITHM'] = PREPROCESSING_ALGORITHM
    MODEL['PREPROCESSING_ALGORITHM_UUID'] = PREPROCESSING_ALGORITHM_ID
    MODEL['DIR'] = f'./data-saved-models/glove-false/{NETWORK_KEY}/'
    ensure_path_exists(MODEL['DIR'])
    MODEL['PREFIX'] = f'{NETWORK_KEY}-{PREPROCESSING_ALGORITHM_ID}-SEED-{SEED}'

    train_data['preprocessed'] = tweets_preprocessor.preprocess(
        train_data.text,
        PREPROCESSING_ALGORITHM,
        keywords=train_data.keyword,
        locations=train_data.location)

    test_data['preprocessed'] = tweets_preprocessor.preprocess(
        test_data.text,
        PREPROCESSING_ALGORITHM,
        keywords=test_data.keyword,
        locations=test_data.location)

    train_inputs, val_inputs, train_targets, val_targets = train_test_split(
Exemple #3
0
def store_ip(temp_path, ip):
    utils.ensure_path_exists(temp_path)
    with open(os.path.join(temp_path, 'myip.prev_ip'), 'w') as f:
        f.write(ip)
#! /usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from damping_analyzer import Wave, Waves
from math import pi
from scipy import signal
import matplotlib.gridspec as gridspec
from utils import ensure_path_exists
from os.path import join

if __name__ == '__main__':

    sampling_rate = 200
    t1 = 5
    IMG_DIR = 'imgs/'
    ensure_path_exists(IMG_DIR)

    freqs = [0.5, 1, 1.5, 2, 2.5, 3, 3.3, 4, 5, 8]

    x_fmt_gen_eq = r'$x(t) = A e^{-\omega_0 \zeta t} \cos( \omega_d t )$'

    #############
    # UNDERdamped x'(t)
    #fmt_gen_eq = r'$\dot{x}(t) = -\omega_0 \zeta A e^{-\omega_0 \zeta t} \cos( \omega_0 \sqrt{1-\zeta^2} t ) - \omega_0 \sqrt{1-\zeta^2} A e^{-\omega_0 \zeta t} \sin( \omega_0 \sqrt{1-\zeta^2} t )$'
    #fmt_gen_eq = r'$\dot{x}(t) = -\omega_0 A e^{-\omega_0 \zeta t} (\zeta \cos( \omega_0 \sqrt{1-\zeta^2} t ) + \omega_0 \sqrt{1-\zeta^2} \sin( \omega_0 \sqrt{1-\zeta^2} t ))$'
    #fmt_gen_eq = r'$\dot{x}(t) = -\omega_0 A e^{-\omega_0 \zeta t} (\zeta \cos( \omega_d t ) + \omega_d \sin( \omega_d t ))$'

    xdot_fmt_gen_eq = r'$\dot{x}(t) = -\omega_0 A e^{-\omega_0 \zeta t} (\zeta \cos( \omega_d t ) + \omega_d \sin( \omega_d t ))$'

    #############
    # UNDERdamped x(t)