def run_auv_iteration(self, measures, born_components, nav_status, swath_w, swath_l): # pr_born = self.predict_birth(born_components) sss_path = utils.evaluate_sss_path(nav_status, swath_w, swath_l) predicted = self.predict_existing(nav_status, sss_path) predicted.extend(born_components) self.gm = predicted self.auv_update(measures, nav_status, sss_path) self.prune()
#!/usr/bin/python import itertools import utils import numpy as np import gmphd if __name__ == "__main__": width = 50.0 length = 5.0 nav_status = np.array([10.0, 5.0, 1.57]) print(utils.evaluate_sss_path(nav_status, width, length)) # Test of the selection functions for features inside the fov of the sss gmphd_components = [ gmphd.GmphdComponent(1, [10, 5], [1, 0, 0, 1]), gmphd.GmphdComponent(1, [100, 1], [1, 0, 0, 1]) ] means = np.squeeze(np.asarray([comp._mean for comp in gmphd_components])) print(means, means.shape) sss_path = utils.evaluate_sss_path(nav_status, width, length) gmm_mask = utils.inside_polygon(means, sss_path) gmm_masked = list(itertools.compress(gmphd_components, gmm_mask)) print gmm_masked
#!/usr/bin/python import itertools import utils import numpy as np import gmphd if __name__ == "__main__": width = 50.0 length = 5.0 nav_status = np.array([10.0, 5.0, 1.57]) print(utils.evaluate_sss_path(nav_status, width, length)) # Test of the selection functions for features inside the fov of the sss gmphd_components = [gmphd.GmphdComponent(1, [10,5],[1,0,0,1]),gmphd.GmphdComponent(1, [100,1],[1,0,0,1])] means = np.squeeze(np.asarray([comp._mean for comp in gmphd_components])) print(means,means.shape) sss_path = utils.evaluate_sss_path(nav_status, width, length) gmm_mask = utils.inside_polygon(means, sss_path) gmm_masked = list(itertools.compress(gmphd_components, gmm_mask)) print gmm_masked