Exemple #1
0
def poisoned_pixel_CDP(norm_bound, noise_scale, nb_attackers, seed=1):
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # load poisoned model
    backdoor_model = copy.deepcopy(global_model)
    backdoor_model.load_state_dict(torch.load('../save/poison_model.pth'))

    # testing accuracy for global model
    testing_accuracy = [0.1]
    backdoor_accuracy = [0.1]

    for epoch in tqdm(range(args.epochs)):
        local_del_w, local_norms = [], []
        print(f'\n | Global Training Round : {epoch + 1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        # Adversary updates
        print("Evil")
        for idx in idxs_users[0:nb_attackers]:

            # backdoor model
            w = copy.deepcopy(backdoor_model)

            # compute change in parameters and norm
            zeta = 0
            for del_w, w_old in zip(w.parameters(), global_model.parameters()):
                del_w.data = del_w.data - copy.deepcopy(w_old.data)
                zeta += del_w.norm(2).item()**2
            zeta = zeta**(1. / 2)
            del_w = w.state_dict()

            print("EVIL")
            print(zeta)

            # add to global round
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))

        # Non-adversarial updates
        for idx in idxs_users[nb_attackers:]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            del_w, zeta = local_model.update_weights(
                model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))
            print("good")
            #print(zeta)

        # norm bound (e.g. median of norms)
        clip_factor = norm_bound  #min(norm_bound, np.median(local_norms))
        print(clip_factor)

        # clip updates
        for i in range(len(idxs_users)):
            for param in local_del_w[i].values():
                print(max(1, local_norms[i] / clip_factor))
                param /= max(1, local_norms[i] / clip_factor)

        # average local model updates
        average_del_w = average_weights(local_del_w)

        # Update model and add noise
        # w_{t+1} = w_{t} + avg(del_w1 + del_w2 + ... + del_wc) + Noise
        for param, param_del_w in zip(global_weights.values(),
                                      average_del_w.values()):
            param += param_del_w
            param += torch.randn(
                param.size()) * noise_scale * norm_bound / len(idxs_users)
        global_model.load_state_dict(global_weights)

        # test accuracy
        test_acc, test_loss, backdoor = test_backdoor_pixel(
            args, global_model, test_dataset)
        testing_accuracy.append(test_acc)
        backdoor_accuracy.append(backdoor)

        print("Testing & Backdoor accuracies")
        print(testing_accuracy)
        print(backdoor_accuracy)

    # save test accuracy
    np.savetxt(
        '../save/PixelAttack/TestAcc/iid_GDP_{}_{}_clip{}_scale{}_attackers{}_seed{}.txt'
        .format(args.dataset, args.model, norm_bound, noise_scale,
                nb_attackers, s), testing_accuracy)

    np.savetxt(
        '../save/PixelAttack/BackdoorAcc/iid_GDP_{}_{}_clip{}_scale{}_attackers{}_seed{}.txt'
        .format(args.dataset, args.model, norm_bound, noise_scale,
                nb_attackers, s), backdoor_accuracy)
Exemple #2
0
from tensorboardX import SummaryWriter

from options import args_parser
from update import LocalUpdate, test_inference
from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
from utils import get_dataset, average_weights, exp_details

if __name__ == '__main__':
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    if args.gpu_id:
        torch.cuda.set_device(args.gpu_id)
    device = 'cuda' if args.gpu else 'cpu'

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
def poisoned_1to7_NoDefense(seed=1):
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # testing accuracy for global model
    testing_accuracy = [0.1]
    backdoor_accuracy = [0.1]

    for epoch in tqdm(range(args.epochs)):
        local_del_w, local_norms = [], []
        print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        # Adversary updates
        print("Evil norms:")
        for idx in idxs_users[0:args.nb_attackers]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)

            del_w, zeta = local_model.poisoned_1to7(
                model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))
            print(zeta)

        # Non-adversarial updates
        print("Good norms:")
        for idx in idxs_users[args.nb_attackers:]:
            print(idx)
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)

            del_w, zeta = local_model.update_weights(
                model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))
            print(zeta)

        # average local updates
        average_del_w = average_weights(local_del_w)

        # Update global model: w_{t+1} = w_{t} + average_del_w
        for param, param_del_w in zip(global_weights.values(),
                                      average_del_w.values()):
            param += param_del_w
        global_model.load_state_dict(global_weights)

        # test accuracy, backdoor accuracy
        test_acc, test_loss, back_acc = test_inference1to7(
            args, global_model, test_dataset)
        testing_accuracy.append(test_acc)
        backdoor_accuracy.append(back_acc)

        print("Test & Backdoor accuracy")
        print(testing_accuracy)
        print(backdoor_accuracy)

    # save accuracy
    np.savetxt(
        '../save/1to7Attack/TestAcc/NoDefense_{}_{}_seed{}.txt'.format(
            args.dataset, args.model, s), testing_accuracy)

    np.savetxt(
        '../save/1to7Attack/BackAcc/NoDefense_{}_{}_seed{}.txt'.format(
            args.dataset, args.model, s), backdoor_accuracy)
Exemple #4
0
def poisoned_pixel_LDP(norm_bound, noise_scale, nb_attackers, seed=1):
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # testing accuracy for global model
    testing_accuracy = [0.1]
    backdoor_accuracy = [0.1]

    for epoch in tqdm(range(args.epochs)):
        local_w, local_norms = [], []
        print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        # Poisonous updates
        for idx in idxs_users[0:nb_attackers]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            w, _ = local_model.pixel_ldp(model=copy.deepcopy(global_model),
                                         norm_bound=norm_bound,
                                         noise_scale=noise_scale)
            local_w.append(copy.deepcopy(w))

        # Regular updates
        for idx in idxs_users[nb_attackers:]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            w, _ = local_model.dp_sgd(model=copy.deepcopy(global_model),
                                      norm_bound=norm_bound,
                                      noise_scale=noise_scale)
            local_w.append(copy.deepcopy(w))

        # update global weights
        global_weights = average_weights(local_w)
        global_model.load_state_dict(global_weights)

        # test accuracy
        test_acc, test_loss, backdoor = test_backdoor_pixel(
            args, global_model, test_dataset)
        testing_accuracy.append(test_acc)
        backdoor_accuracy.append(backdoor)

        print("Testing & Backdoor accuracies")
        print(testing_accuracy)
        print(backdoor_accuracy)

    # save test accuracy
    np.savetxt(
        '../save/PixelAttack/TestAcc/LDP_iid_{}_{}_clip{}_scale{}_attackers{}_seed{}.txt'
        .format(args.dataset, args.model, norm_bound, noise_scale,
                nb_attackers, s), testing_accuracy)

    np.savetxt(
        '../save/PixelAttack/BackdoorAcc/LDP_iid_{}_{}_clip{}_scale{}_attackers{}_seed{}.txt'
        .format(args.dataset, args.model, norm_bound, noise_scale,
                nb_attackers, s), backdoor_accuracy)
def poisoned_random_CDP(seed=1):
    # Central DP to protect against attackers

    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # testing accuracy for global model
    testing_accuracy = [0.1]
    backdoor_accuracy = [0.1]

    for epoch in tqdm(range(args.epochs)):
        local_del_w, local_norms = [], []
        print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        # Adversaries' update
        for idx in idxs_users[0:args.nb_attackers]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            del_w, zeta = local_model.poisoned_1to7(
                model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))

        # Non-adversary updates
        for idx in idxs_users[args.nb_attackers:]:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            del_w, zeta = local_model.update_weights(
                model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))
            local_norms.append(copy.deepcopy(zeta))

        # norm bound (e.g. median of norms)
        median_norms = args.norm_bound  #np.median(local_norms)  #args.norm_bound
        print(median_norms)

        # clip weight updates
        for i in range(len(idxs_users)):
            for param in local_del_w[i].values():
                param /= max(1, local_norms[i] / median_norms)

        # average the clipped weight updates
        average_del_w = average_weights(local_del_w)

        # Update global model using clipped weight updates, and add noise
        # w_{t+1} = w_{t} + avg(del_w1 + del_w2 + ... + del_wc) + Noise
        for param, param_del_w in zip(global_weights.values(),
                                      average_del_w.values()):
            param += param_del_w
            param += torch.randn(
                param.size()) * args.noise_scale * median_norms / (
                    len(idxs_users)**0.5)
        global_model.load_state_dict(global_weights)

        # test accuracy
        test_acc, test_loss = test_inference(args, global_model, test_dataset)
        testing_accuracy.append(test_acc)

        print("Test accuracy")
        print(testing_accuracy)

    # save test accuracy
    np.savetxt(
        '../save/1to7Attack/GDP_{}_{}_seed{}_clip{}_scale{}.txt'.format(
            args.dataset, args.model, s, args.norm_bound, args.noise_scale),
        testing_accuracy)
Exemple #6
0
from tensorboardX import SummaryWriter

from options import args_parser
from update import LocalUpdate, test_inference
from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
from utils import get_dataset, average_weights, exp_details

if __name__ == '__main__':
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()  # 从options.py中获取所有超参数
    exp_details(args)  # 显示输出所有超参数信息

    # 选择cpu/gpu
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)
    device = 'cuda' if args.gpu is not None else 'cpu'

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
def main():
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    if args.gpu:
        torch.cuda.set_device(0)
    device = 'cuda' if args.gpu else 'cpu'

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    args.num_users = len(user_groups)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()

    # copy weights
    global_weights = global_model.state_dict()

    # Training
    train_loss, train_accuracy = [], []
    val_acc_list, net_list = [], []
    cv_loss, cv_acc = [], []
    print_every = 2
    val_loss_pre, counter = 0, 0

    #Beolvassuk, hogy éppen mely résztvevők vesznek részt a tanításban (0 jelentése, hogy benne van, 1 az hogy nincs)
    users = []
    fp = open('users.txt', "r")
    x = fp.readline().split(' ')
    for i in x:
        if i != '':
            users.append(int(i))
    fp.close()

    #for epoch in tqdm(range(args.epochs)):
    for epoch in range(args.epochs):
        local_weights, local_losses = [], []
        #print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        for idx in idxs_users:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            w, loss = local_model.update_weights(
                model=copy.deepcopy(global_model), global_round=epoch)
            local_weights.append(copy.deepcopy(w))
            local_losses.append(copy.deepcopy(loss))

        global_weights = average_weights(local_weights)

        # update global weights
        global_model.load_state_dict(global_weights)

        loss_avg = sum(local_losses) / len(local_losses)
        train_loss.append(loss_avg)

        # Calculate avg training accuracy over all users at every epoch
        list_acc, list_loss = [], []
        global_model.eval()
        for c in range(args.num_users):
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            acc, loss = local_model.inference(model=global_model)
            list_acc.append(acc)
            list_loss.append(loss)
        train_accuracy.append(sum(list_acc) / len(list_acc))

        # print global training loss after every 'i' rounds
        '''if (epoch+1) % print_every == 0:
            print(f' \nAvg Training Stats after {epoch+1} global rounds:')
            print(f'Training Loss : {np.mean(np.array(train_loss))}')
            print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))'''

    # Test inference after completion of training

    #Beolvassuk hogy mely résztvevőnek mely labeleket osztottuk ki.
    ftrain = open('traindataset.txt')
    testlabels = []
    line = ftrain.readline()
    while line != "":
        sor = line.split(' ')
        array = []
        for i in sor:
            array.append(int(i))
        testlabels.append(array)
        line = ftrain.readline()
    ftrain.close()

    print("USERS LABELS")
    print(testlabels)

    #Minden lehetséges koalícióra lefut a tesztelés
    for j in range((2**args.num_users) - 1):
        binary = numberToBinary(j, len(users))

        test_acc, test_loss = test_inference(args, global_model, test_dataset,
                                             testlabels, binary, len(binary))

        #Teszt eredmények kiírása
        print("RESZTVEVOK")
        print(users)
        print("TEST NUMBER")
        print(j)
        print("TEST BINARY")
        print(binary)
        print("TEST LABELS")
        print(testlabels)
        print("Test Accuracy")
        print("{:.2f}%".format(100 * test_acc))
        print()

    # Saving the objects train_loss and train_accuracy:
    '''file_name = '../save/objects/{}_{}_{}_C[{}]_iid[{}]_E[{}]_B[{}].pkl'.\
Exemple #8
0
def main():
    start_time = time.time()

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')
    args = args_parser()
    args = adatok.arguments(args)
    exp_details(args)
    if args.gpu:
        torch.cuda.set_device(args.gpu)
    device = 'cuda' if args.gpu else 'cpu'

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)

    if adatok.data.image_initialization == True:
        adatok.data.image_initialization = False
        return

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in,
                               dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    #print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # Training
    train_loss, train_accuracy = [], []
    val_acc_list, net_list = [], []
    cv_loss, cv_acc = [], []
    print_every = 2
    val_loss_pre, counter = 0, 0

    for epoch in tqdm(range(args.epochs)):
        local_weights, local_losses = [], []
        #print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        for idx in idxs_users:
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            w, loss = local_model.update_weights(
                model=copy.deepcopy(global_model), global_round=epoch)
            local_weights.append(copy.deepcopy(w))
            local_losses.append(copy.deepcopy(loss))

        # update global weights
        global_weights = average_weights(local_weights)

        # update global weights
        global_model.load_state_dict(global_weights)

        loss_avg = sum(local_losses) / len(local_losses)
        train_loss.append(loss_avg)

        # Calculate avg training accuracy over all users at every epoch
        list_acc, list_loss = [], []
        global_model.eval()
        for c in range(args.num_users):
            local_model = LocalUpdate(args=args,
                                      dataset=train_dataset,
                                      idxs=user_groups[idx],
                                      logger=logger)
            acc, loss = local_model.inference(model=global_model)
            list_acc.append(acc)
            list_loss.append(loss)
        train_accuracy.append(sum(list_acc) / len(list_acc))

        # print global training loss after every 'i' rounds
        '''if (epoch+1) % print_every == 0:
            print(f' \nAvg Training Stats after {epoch+1} global rounds:')
            print(f'Training Loss : {np.mean(np.array(train_loss))}')
            print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))'''

        # Test inference after completion of training
        for i in adatok.data.test_groups_in_binary:
            adatok.data.actual_test_group_in_binary = i
            test_acc, test_loss = test_inference(args, global_model,
                                                 test_dataset)
            print("Resoults")
            print(epoch)
            print(adatok.data.actual_train_group_in_binary)
            print(adatok.data.actual_test_group_in_binary)
            print(test_acc)
            print(test_loss)
    '''
def poisoned_NoDefense(nb_attackers, seed=1):

    # define paths
    path_project = os.path.abspath('..')
    logger = SummaryWriter('../logs')

    args = args_parser()
    exp_details(args)

    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load dataset and user groups
    train_dataset, test_dataset, user_groups = get_dataset(args)


    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)

    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in, dim_hidden=64,
                               dim_out=args.num_classes)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # copy weights
    global_weights = global_model.state_dict()

    # backdoor model
    dummy_model = copy.deepcopy(global_model)
    dummy_model.load_state_dict(torch.load('../save/all_5_model.pth'))
    dummy_norm = 0
    for x in dummy_model.state_dict().values():
        dummy_norm += x.norm(2).item() ** 2
    dummy_norm = dummy_norm ** (1. / 2)

    # testing accuracy for global model
    testing_accuracy = [0.1]

    for epoch in tqdm(range(args.epochs)):
        local_del_w = []
        print(f'\n | Global Training Round : {epoch+1} |\n')

        global_model.train()
        m = max(int(args.frac * args.num_users), 1)
        idxs_users = np.random.choice(range(args.num_users), m, replace=False)

        # Adversary updates
        for idx in idxs_users[0:nb_attackers]:
            print("evil")
            local_model = LocalUpdate(args=args, dataset=train_dataset, idxs=user_groups[idx], logger=logger)
            #del_w, _ = local_model.poisoned_SGA(model=copy.deepcopy(global_model), change=1)

            w = copy.deepcopy(dummy_model)
            # compute change in parameters and norm
            zeta = 0
            for del_w, w_old in zip(w.parameters(), global_model.parameters()):
                del_w.data -= copy.deepcopy(w_old.data)
                del_w.data *= m / nb_attackers
                del_w.data += copy.deepcopy(w_old.data)
                zeta += del_w.norm(2).item() ** 2
            zeta = zeta ** (1. / 2)
            del_w = copy.deepcopy(w.state_dict())
            local_del_w.append(copy.deepcopy(del_w))


        # Non-adversarial updates
        for idx in idxs_users[nb_attackers:]:
            print("good")
            local_model = LocalUpdate(args=args, dataset=train_dataset, idxs=user_groups[idx], logger=logger)
            del_w, _ = local_model.update_weights(model=copy.deepcopy(global_model), change=1)
            local_del_w.append(copy.deepcopy(del_w))

        # average local updates
        average_del_w = average_weights(local_del_w)

        # Update global model: w_{t+1} = w_{t} + average_del_w
        for param, param_del_w in zip(global_weights.values(), average_del_w.values()):
            param += param_del_w
        global_model.load_state_dict(global_weights)

        # test accuracy
        test_acc, test_loss = test_inference(args, global_model, test_dataset)
        testing_accuracy.append(test_acc)

        print("Test accuracy")
        print(testing_accuracy)

    # save test accuracy
    np.savetxt('../save/RandomAttack/NoDefense_iid_{}_{}_attackers{}_seed{}.txt'.
                 format(args.dataset, args.model, nb_attackers, s), testing_accuracy)