def stop_EMD(self): """Check if there are enough extrema (3) to continue sifting.""" if self.is_mode_complex: ner = [] for k in range(self.ndirs): phi = k * pi / self.ndirs indmin, indmax, _ = extr(np.real(np.exp(1j * phi) * self.residue)) ner.append(len(indmin) + len(indmax)) stop = np.any(ner < 3) else: indmin, indmax, _ = extr(self.residue) ner = len(indmin) + len(indmax) stop = ner < 3 return stop
def stop_EMD(self): """ Tests if there are enough extrema (3) to continue sifting. """ if self.MODE_COMPLEX: ner = [] for k in range(self.ndirs): phi = k*pi/self.ndirs indmin, indmax, _ = extr(np.real(np.exp(1j*phi)*self.r)) ner.append(len(indmin)+len(indmax)) stop = np.any(ner<3) else: indmin, indmax, _ = extr(self.r) ner = len(indmin) + len(indmax) stop = ner < 3 return stop
def stop_EMD(self): if self.is_bivariate: stop = False for k in range(self.ndirs): phi = k * pi / self.ndirs indmin, indmax, _ = extr( np.real(np.exp(1j * phi) * self.residue)) if len(indmin) + len(indmax) < 3: stop = True break else: indmin, indmax, _ = extr(self.residue) ner = len(indmin) + len(indmax) stop = ner < 3 return stop
def decompose(self): """Decompose the input signal into IMFs. This function does all the heavy lifting required for sifting, and should ideally be the only public method of this class.""" while self.keep_decomposing(): # current mode m = self.residue # computing mean and stopping criterion stop_sift, moyenne = self.stop_sifting(m) # in case current mode is small enough to cause spurious extrema if np.max(np.abs(m)) < (1e-10) * np.max(np.abs(self.x)): if not stop_sift: warnings.warn("EMD Warning: Amplitude too small, stopping.") else: print('Force stopping EMD: amplitude too small.') return # SIFTING LOOP: while not(stop_sift) and (self.nbit < self.maxiter): if (not(self.is_mode_complex) and (self.nbit > self.maxiter / 5) and self.nbit % np.floor(self.maxiter / 10) == 0 and not(self.fixe) and self.nbit > 100): print('Mode ' + str(self.k) + ', Iteration ' + str(self.nbit)) im, iM, _ = extr(m) print(str(np.sum(m[im] > 0)) + ' minima > 0; ' + str(np.sum(m[im] < 0)) + ' maxima < 0.') # Sifting m = m - moyenne # Computing mean and stopping criterion if self.fixe: stop_sift, moyenne = self.stop_sifting_fixe() elif self.fixe_h: stop_sift, moyenne, stop_count = self.stop_sifting_fixe_h() else: stop_sift, moyenne = self.stop_sifting(m) self.nbit += 1 self.NbIt += 1 if (self.nbit == (self.maxiter - 1)) and not(self.fixe) and (self.nbit > 100): warnings.warn("Emd:warning, Forced stop of sifting - " + "too many iterations") self.imf.append(m) self.nbits.append(self.nbit) self.k += 1 self.residue = self.residue - m self.ort = self.io() if np.any(self.residue): self.imf.append(self.residue) return np.array(self.imf)
def decompose(self): while self.keep_decomposing(): # current mode m = self.residue # computing mean and stopping criterion stop_sift, moyenne = self.stop_sifting(m) # in case current mode is small enough to cause spurious extrema if np.max(np.abs(m)) < (1e-10) * np.max(np.abs(self.x)): if not stop_sift: warnings.warn("EMD Warning: Amplitude too small, stopping.") else: print "Force stopping EMD: amplitude too small." return # SIFTING LOOP: while not(stop_sift) and (self.nbit < self.maxiter): if (not(self.is_mode_complex) and (self.nbit > self.maxiter / 5) and self.nbit % np.floor(self.maxiter / 10) == 0 and not(self.fixe) and self.nbit > 100): print "Mode " + str(self.k) + ", Iteration " + str(self.nbit) im, iM, _ = extr(m) print str(np.sum(m[im] > 0)) + " minima > 0; " + str(np.sum(m[im] < 0)) + " maxima < 0." # Sifting m = m - moyenne # Computing mean and stopping criterion if self.fixe: stop_sift, moyenne = self.stop_sifting_fixe() elif self.fixe_h: stop_sift, moyenne, stop_count = self.stop_sifting_fixe_h() else: stop_sift, moyenne = self.stop_sifting(m) self.nbit += 1 self.NbIt += 1 if (self.nbit == (self.maxiter - 1)) and not(self.fixe) and (self.nbit > 100): warnings.warn("Emd:warning, Forced stop of sifting - " + "too many iterations") self.imf.append(m) self.nbits.append(self.nbit) self.k += 1 self.residue = self.residue - m self.ort = self.io() if np.any(self.residue): self.imf.append(self.residue) return np.array(self.imf)
def emd(x, ts, n_imfs): imfs = np.zeros((n_imfs + 1, x.shape[0])) for i in range(n_imfs): ix = 0 mode = x - imfs.sum(0) nmin, nmax, nzero = map(len, extr(mode)) tmin, tmax, xmin, xmax = boundary_conditions(mode, ts) # while abs((nmin + nmax) - nzero) > 1 and (not (utils.judge_stop(mode))): # mode, amplitude_error = sift(mode, ts) # if amplitude_error <= tol or (utils.judge_stop(mode)): # break if abs((nmin + nmax) - nzero) > 1 and (not ( utils.judge_stop(mode))) and len(tmin) > 3 and len(tmax) > 3: mode, amplitude_error = sift(mode, ts) imfs[i, :] = mode imfs[-1, :] = x - imfs.sum(0) return imfs
def mean_and_amplitude(self, m): if self.is_bivariate: if self.bivariate_mode == 'centroid': nem = [] nzm = [] envmin = np.zeros((self.ndirs, len(self.t))) envmax = np.zeros((self.ndirs, len(self.t))) for k in range(self.ndirs): phi = k * pi / self.ndirs y = np.real(np.exp(-1j * phi) * m) indmin, indmax, indzer = extr(y) nem.append(len(indmin) + len(indmax)) nzm.append(len(indzer)) if self.nbsym: tmin, tmax, zmin, zmax = boundary_conditions( y, self.t, m, self.nbsym) else: tmin = np.r_[self.t[0], self.t[indmin], self.t[-1]] tmax = np.r_[self.t[0], self.t[indmax], self.t[-1]] zmin, zmax = m[tmin], m[tmax] f = splrep(tmin, zmin) spl = splev(self.t, f) envmin[k, :] = spl f = splrep(tmax, zmax) spl = splev(self.t, f) envmax[k, :] = spl envmoy = np.mean((envmin + envmax) / 2, axis=0) amp = np.mean(abs(envmax - envmin), axis=0) / 2 elif self.bivariate_mode == 'bbox_center': nem = [] nzm = [] envmin = np.zeros((self.ndirs, len(self.t)), dtype=complex) envmax = np.zeros((self.ndirs, len(self.t)), dtype=complex) for k in range(self.ndirs): phi = k * pi / self.ndirs y = np.real(np.exp(-1j * phi) * m) indmin, indmax, indzer = extr(y) nem.append(len(indmin) + len(indmax)) nzm.append(len(indzer)) if self.nbsym: tmin, tmax, zmin, zmax = boundary_conditions( y, self.t, m, self.nbsym) else: tmin = np.r_[self.t[0], self.t[indmin], self.t[-1]] tmax = np.r_[self.t[0], self.t[indmax], self.t[-1]] zmin, zmax = m[tmin], m[tmax] f = splrep(tmin, zmin) spl = splev(self.t, f) envmin[k, ] = np.exp(1j * phi) * spl f = splrep(tmax, zmax) spl = splev(self.t, f) envmax[k, ] = np.exp(1j * phi) * spl envmoy = np.mean((envmin + envmax), axis=0) amp = np.mean(abs(envmax - envmin), axis=0) / 2 else: indmin, indmax, indzer = extr(m) nem = len(indmin) + len(indmax) nzm = len(indzer) if self.nbsym: tmin, tmax, mmin, mmax = boundary_conditions( m, self.t, m, self.nbsym) else: tmin = np.r_[self.t[0], self.t[indmin], self.t[-1]] tmax = np.r_[self.t[0], self.t[indmax], self.t[-1]] mmin, mmax = m[tmin], m[tmax] f = splrep(tmin, mmin) envmin = splev(self.t, f) f = splrep(tmax, mmax) envmax = splev(self.t, f) envmoy = (envmin + envmax) / 2 amp = np.abs(envmax - envmin) / 2.0 if self.is_bivariate: nem = np.array(nem) nzm = np.array(nzm) return envmoy, nem, nzm, amp
def decompose(self): if self.display_sifting: fig_h = plt.figure() A = not(self.stop_EMD()) B = (self.k<self.MAXMODES+1 or self.MAXMODES==0) C = not(np.any(self.mask)) while (A and B and C): # current mode m = self.r # mode at previous iteration mp = m.copy() # computing mean and stopping criterion if self.FIXE: stop_sift, moyenne = self.stop_sifting_fixe() elif self.FIXE_H: stop_count = 0 stop_sift, moyenne = self.stop_sifting_fixe_h() else: stop_sift, moyenne, _ = self.stop_sifting(m) # in case current mode is small enough to cause spurious extrema if np.max(np.abs(m)) < (1e-10)*np.max(np.abs(self.x)): if not stop_sift: warnings.warn("EMD Warning: Amplitude too small, stopping.") else: print "Force stopping EMD: amplitude too small." return # SIFTING LOOP: while not(stop_sift) and (self.nbit<self.MAXITERATIONS): print "iteration {}".format(self.nbit) if (not(self.MODE_COMPLEX) and (self.nbit>self.MAXITERATIONS/5) \ and self.nbit%np.floor(self.MAXITERATIONS/10)==0 and \ not(self.FIXE) and self.nbit > 100): print "Mode "+str(self.k) + ", Iteration " + str(self.nbit) im, iM, _ = extr(m) print str(np.sum(m[im]>0)) + " minima > 0; " + \ str(np.sum(m[im]<0)) + " maxima < 0." # Sifting m = m - moyenne # Computing mean and stopping criterion if self.FIXE: stop_sift, moyenne = self.stop_sifting_fixe() elif self.FIXE_H: stop_sift, moyenne, stop_count = self.stop_sifting_fixe_h() else: stop_sift, moyenne, s = self.stop_sifting(m) # Display if self.display_sifting and self.MODE_COMPLEX: indmin, indmax, _ = extr(m) tmin, tmax, mmin, mmax = boundary_conditions(indmin, indmax, self.t, mp, mp, self.nbsym) f = splrep(tmin,mmin) envminp = splev(self.t,f) f = splrep(tmax,mmax) envmaxp = splev(self.t,f) envmoyp = (envminp+envmaxp)/2; if self.FIXE or self.FIXE_H: self.display_emd_fixe(mp, envminp, envmaxp, envmoyp) else: sxp = 2*(np.abs(envmoyp))/np.abs(envmaxp-envminp) sp = np.mean(sxp) self.display_emd(mp, envminp, envmaxp, envmoyp, sp, sxp) mp = m self.nbit += 1 self.NbIt += 1 if (self.nbit==(self.MAXITERATIONS-1)) and not(self.FIXE) and (self.nbit>100): warnings.warn("Emd:warning, Forced stop of sifting - "+ "too many iterations") self.imf.append(m) if self.display_sifting: print "mode "+str(self.k)+ " stored" self.nbits.append(self.nbit) self.k += 1 self.r = self.r - m ort = self.io() self.ort = ort return np.array(self.imf)
def mean_and_amplitude(self, m): """ Computes the mean of the envelopes and the mode amplitudes.""" # FIXME: The spline interpolation may not be identical with the MATLAB # implementation. Needs further investigation. if self.MODE_COMPLEX: if self.MODE_COMPLEX == 1: nem = [] nzm = [] envmin = np.zeros((self.ndirs,len(self.t))) envmax = np.zeros((self.ndirs,len(self.t))) for k in range(self.ndirs): phi = k*pi/self.ndirs y = np.real(np.exp(-1j*phi)*m) indmin, indmax, indzer = extr(y) nem.append(len(indmin)+len(indmax)) nzm.append(len(indzer)) tmin, tmax, zmin, zmax = boundary_conditions(indmin, indmax, self.t, y, m, self.nbsym) f = splrep(tmin,zmin) spl = splev(self.t,f) envmin[k,:] = spl f = splrep(tmax,zmax) spl = splev(self.t,f) envmax[k,:] = spl envmoy = np.mean((envmin+envmax)/2,axis=0) amp = np.mean(abs(envmax-envmin),axis=0)/2 elif self.MODE_COMPLEX == 2: nem = [] nzm = [] envmin = np.zeros((self.ndirs,len(self.t))) envmax = np.zeros((self.ndirs,len(self.t))) for k in range(self.ndirs): phi = k*pi/self.ndirs y = np.real(np.exp(-1j*phi)*m) indmin, indmax, indzer = extr(y) nem.append(len(indmin)+len(indmax)) nzm.append(len(indzer)) tmin, tmax, zmin, zmax = boundary_conditions(indmin, indmax, self.t, y, m, self.nbsym) f = splrep(tmin, zmin) spl = splev(self.t,f) envmin[k,:] = np.exp(1j*phi)*spl f = splrep(tmax, zmax) spl = splev(self.t,f) envmax[k,:] = np.exp(1j*phi)*spl envmoy = np.mean((envmin+envmax),axis=0) amp = np.mean(abs(envmax-envmin),axis=0)/2 else: indmin, indmax, indzer = extr(m) nem = len(indmin)+len(indmax) nzm = len(indzer) tmin, tmax, mmin, mmax = boundary_conditions(indmin, indmax, self.t, m, m, self.nbsym) f = splrep(tmin, mmin) envmin = splev(self.t,f) f = splrep(tmax, mmax) envmax = splev(self.t,f); envmoy = (envmin+envmax)/2; amp = np.abs(envmax-envmin)/2.0 return envmoy, nem, nzm, amp
def mean_and_amplitude(self, m): """ Computes the mean of the envelopes and the mode amplitudes.""" # FIXME: The spline interpolation may not be identical with the MATLAB # implementation. Needs further investigation. if self.is_mode_complex: if self.is_mode_complex == 1: nem = [] nzm = [] envmin = np.zeros((self.ndirs, len(self.t))) envmax = np.zeros((self.ndirs, len(self.t))) for k in range(self.ndirs): phi = k * pi / self.ndirs y = np.real(np.exp(-1j * phi) * m) indmin, indmax, indzer = extr(y) nem.append(len(indmin) + len(indmax)) nzm.append(len(indzer)) tmin, tmax, zmin, zmax = boundary_conditions( y, self.t, m, self.nbsym) f = splrep(tmin, zmin) spl = splev(self.t, f) envmin[k, :] = spl f = splrep(tmax, zmax) spl = splev(self.t, f) envmax[k, :] = spl envmoy = np.mean((envmin + envmax) / 2, axis=0) amp = np.mean(abs(envmax - envmin), axis=0) / 2 elif self.is_mode_complex == 2: nem = [] nzm = [] envmin = np.zeros((self.ndirs, len(self.t))) envmax = np.zeros((self.ndirs, len(self.t))) for k in range(self.ndirs): phi = k * pi / self.ndirs y = np.real(np.exp(-1j * phi) * m) indmin, indmax, indzer = extr(y) nem.append(len(indmin) + len(indmax)) nzm.append(len(indzer)) tmin, tmax, zmin, zmax = boundary_conditions( y, self.t, m, self.nbsym) f = splrep(tmin, zmin) spl = splev(self.t, f) envmin[k, ] = np.exp(1j * phi) * spl f = splrep(tmax, zmax) spl = splev(self.t, f) envmax[k, ] = np.exp(1j * phi) * spl envmoy = np.mean((envmin + envmax), axis=0) amp = np.mean(abs(envmax - envmin), axis=0) / 2 else: indmin, indmax, indzer = extr(m) nem = len(indmin) + len(indmax) nzm = len(indzer) tmin, tmax, mmin, mmax = boundary_conditions( m, self.t, m, self.nbsym) f = splrep(tmin, mmin) envmin = splev(self.t, f) f = splrep(tmax, mmax) envmax = splev(self.t, f) envmoy = (envmin + envmax) / 2 amp = np.abs(envmax - envmin) / 2.0 return envmoy, nem, nzm, amp