y = y * 1 t = training_sets y_mp = np.reshape(y, (t, y_freq)) g = np.shape(y_mp)[1] #Phi_designer_k_svd(Phi_test, y_mp,maxiter = max_iter) ksvd = ApproximateKSVD(n_components=dict_component, transform_n_nonzero_coefs=sparsity) y_cur = np.reshape(y_mp, (t * num_samples, sample_len)) y_cur = y_cur.T Phi_test = ksvd.fit(y_cur).components_ Phi = Phi_test #for super large y signals ''' print Phi_init print Phi ''' #m,n = np.shape(Phi) #print m, n, len(Phi) m, n = np.shape(Phi) print m, n ''' for x in Phi: print x print '######' ''' #sys.exit(0) file_create(f_name, Phi, m, n)
y_mp = np.reshape(y[i], (t,y_freq)) g = np.shape(y_mp)[1] #Phi_designer_k_svd(Phi_test, y_mp,maxiter = max_iter) ksvd = ApproximateKSVD(n_components = dict_component, transform_n_nonzero_coefs=sparsity) y_cur = np.reshape(y_mp, (t * k,m)) y_cur = y_cur.T Phi[j] = ksvd.fit(y_cur).components_ print "Done reading in incoming signal/components" #Phi = Phi_test #note to self: try taking dictionary of the the normal vibrating spindle at point #350000, idle at 0 chan = 1 count = 0 for k in range(0, channels): a, b = np.shape(Phi[k]) write_name = f_name + "/" + f_name + "_" + str(chan) + "_" + str(count) + ".h5" file_create(write_name, Phi[k], a, b) if ((k+1) % 4 == 0): count = 0 chan += 1 else: count +=1 #count += 1 print "Done creating dictionaries for all channels" sys.exit(0) #file_create(f_name, Phi, a, b)