Exemple #1
0
    def random_input(self, test_size=1):

        if not self.one_hot:
            X = np.zeros((test_size, len(self.input_features)))
        else:
            X = np.empty((test_size, len(self.input_features)), dtype=object)

        for i, f in enumerate(self.input_features):
            if self.feature_types[i] == "CATEGORICAL":
                # choose random values for the categorical features
                X[:, i] = np.random.choice(self.label_encoders[i].classes_,
                                           size=test_size)
            else:
                if self.binning:
                    # choose uniformly random values for the continuous features
                    X[:, i] = [self.bins[f][j].unif_val()
                               for j in np.random.choice(len(self.bins[f]),
                                                         size=test_size)]
                else:
                    X[:, i] = utils.gen_query_set(1, test_size)[:, 0]
        return X
Exemple #2
0
    def extract(self,
                budget,
                steps=[],
                adaptive_oracle=False,
                baseline=False,
                epsilon=1e-2,
                reg_lambda=1e-16,
                eps_factor=0.99,
                epoch=100,
                print_epoch=10,
                batch_size=1,
                num_passes=1000,
                random_seed=0):

        numpy.random.seed(random_seed)

        assert not (adaptive_oracle and steps)

        if steps:
            step = steps[0]
        else:
            step = budget

        if not adaptive_oracle:
            X_ext = utils.gen_query_set(self.num_features(), step)
        else:
            X_ext = utils.line_search_oracle(self.num_features(), step,
                                             self.query)

        model = None
        idx = 0
        while budget > 0:
            idx += 1
            budget -= step

            y_ext = self.query(X_ext)

            if not baseline:
                y_ext_p = self.query_probas(X_ext)
            else:
                num_classes = len(self.get_classes())
                y_ext_p = numpy.zeros((len(y_ext), num_classes))
                y_ext_p[numpy.arange(len(y_ext)), y_ext] = 1

            print y_ext_p

            print '{}'.format(-numpy.mean(y_ext_p * numpy.log(y_ext_p)))

            model = build_model(X_ext,
                                y_ext_p,
                                epsilon=epsilon,
                                reg_lambda=reg_lambda,
                                num_passes=num_passes,
                                eps_factor=eps_factor,
                                epoch=epoch,
                                print_epoch=print_epoch,
                                batch_size=batch_size,
                                warm_start=model)

            mtype = "base" if baseline else "extr"
            mode = "adapt-local" if steps \
                else "adapt-oracle" if adaptive_oracle \
                else "passive"
            save(
                model, 'experiments/inversion/{}/models/{}_{}_{}.pkl'.format(
                    self.dataset, mode, mtype, len(X_ext)))

            if budget > 0:
                step = steps[idx] - steps[idx - 1]
                X_local = utils.gen_query_set(n=X_repr.shape[1],
                                              test_size=1000)
                Y_local = predict(model, X_local)

                assert len(pd.Series(Y_local).unique()) != 1

                adaptive_budget = (min(step, budget) * 3) / 4
                adaptive_budget += adaptive_budget % 2
                random_budget = min(step, budget) - adaptive_budget

                predict_func = lambda x: predict(model, x)
                samples = utils.line_search(X_local, Y_local,
                                            adaptive_budget / 2, predict_func)
                X_random = utils.gen_query_set(X_ext.shape[1], random_budget)
                X_ext = numpy.vstack((samples, X_random, X_ext))
Exemple #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('model_file', type=str, help='a pickled model file')
    parser.add_argument('action', type=str, help='action to perform')
    parser.add_argument('budget', type=str, help='query budget')
    parser.add_argument('--num_passes',
                        type=int,
                        help='number of passes',
                        default=1000)
    parser.add_argument('--epsilon',
                        type=float,
                        help='learning rate',
                        default=0.1)
    parser.add_argument('--rounding', type=int, help='rounding digits')
    parser.add_argument('--steps',
                        type=str,
                        nargs='+',
                        default=[],
                        help='adaptive active learning')
    parser.add_argument('--adaptive_oracle',
                        dest='adaptive_oracle',
                        action='store_true',
                        help='adaptive active learning from oracle')
    parser.add_argument('--force_reg',
                        dest='force_reg',
                        action='store_true',
                        help='train a regression layer only')
    parser.add_argument('--batch_size', type=int, help='batch size', default=1)
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    args = parser.parse_args()

    model_file = args.model_file
    action = args.action
    budget = args.budget
    num_passes = args.num_passes
    rounding = args.rounding
    steps = args.steps
    adaptive_oracle = args.adaptive_oracle
    epsilon = args.epsilon
    batch_size = args.batch_size
    force_reg = args.force_reg
    seed = args.seed

    np.random.seed(0)

    X_train, y_train, X_test, y_test, _ = utils.prepare_data('att_faces')

    ext = TheanoMLInversionExtractor(model_file)

    num_unknowns = len(ext.get_classes()) * ext.num_features()

    try:
        budget = int(budget)
    except ValueError:
        budget = int(float(budget) * num_unknowns)

    try:
        steps = map(int, steps)
    except ValueError:
        steps = map(lambda x: int(float(x) * num_unknowns), steps)

    print >> sys.stderr, 'Data: {}, Action: {}, Budget:{}, Seed: {}'.\
        format(model_file, action, budget, seed)
    print >> sys.stderr, 'Number of unknowns: {}'.format(num_unknowns)

    if action == "extract":
        ext.extract(budget,
                    steps=steps,
                    print_epoch=1,
                    adaptive_oracle=adaptive_oracle,
                    num_passes=num_passes,
                    epsilon=epsilon,
                    batch_size=batch_size,
                    random_seed=seed)
    elif action == "compare":
        X_test_u = utils.gen_query_set(X_test.shape[1], 1000)
        ext.compare(X_test, X_test_u)
    else:
        raise ValueError('Unknown action')
Exemple #4
0
 def gen_query_set(self, n, test_size, force_input_space=True):
     return utils.gen_query_set(n, test_size)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('model_file', type=str, help='a pickled model file')
    parser.add_argument('action', type=str, help='action to perform')
    parser.add_argument('budget', type=str, help='query budget')
    parser.add_argument('--num_passes', type=int, help='number of passes',
                        default=1000)
    parser.add_argument('--epsilon', type=float, help='learning rate',
                        default=0.1)
    parser.add_argument('--rounding', type=int, help='rounding digits')
    parser.add_argument('--steps', type=str, nargs='+', default=[],
                        help='adaptive active learning')
    parser.add_argument('--adaptive_oracle', dest='adaptive_oracle',
                        action='store_true',
                        help='adaptive active learning from oracle')
    parser.add_argument('--force_reg', dest='force_reg',
                        action='store_true',
                        help='train a regression layer only')
    parser.add_argument('--batch_size', type=int, help='batch size', default=1)
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    args = parser.parse_args()

    model_file = args.model_file
    action = args.action
    budget = args.budget
    num_passes = args.num_passes
    rounding = args.rounding
    steps = args.steps
    adaptive_oracle = args.adaptive_oracle
    epsilon = args.epsilon
    batch_size = args.batch_size
    force_reg = args.force_reg
    seed = args.seed

    np.random.seed(0)

    X_train, y_train, X_test, y_test, _ = utils.prepare_data('att_faces')

    ext = TheanoMLInversionExtractor(model_file)

    num_unknowns = len(ext.get_classes()) * ext.num_features()

    try:
        budget = int(budget)
    except ValueError:
        budget = int(float(budget) * num_unknowns)

    try:
        steps = map(int, steps)
    except ValueError:
        steps = map(lambda x: int(float(x) * num_unknowns), steps)

    print >> sys.stderr, 'Data: {}, Action: {}, Budget:{}, Seed: {}'.\
        format(model_file, action, budget, seed)
    print >> sys.stderr, 'Number of unknowns: {}'.format(num_unknowns)

    if action == "extract":
        ext.extract(budget, steps=steps, print_epoch=1, 
                    adaptive_oracle=adaptive_oracle, num_passes=num_passes,
                    epsilon=epsilon, batch_size=batch_size, random_seed=seed)
    elif action == "compare":
        X_test_u = utils.gen_query_set(X_test.shape[1], 1000)
        ext.compare(X_test, X_test_u)
    else:
        raise ValueError('Unknown action')
    def extract(self,
                X_train,
                y_train,
                num_repr,
                budget,
                steps=[],
                adaptive_oracle=False,
                use_labels_only=False,
                gamma=1,
                epsilon=1e-2,
                reg_lambda=1e-16,
                eps_factor=0.99,
                epoch=100,
                print_epoch=10,
                batch_size=1,
                num_passes=1000,
                random_seed=0):
        """
        Extracts a logistic regression multilabl classifier with RBF kernel
         for self.query
        :param X_train: For plotting
        :param y_train:  For plotting
        :param num_repr: amount of vectors in the kernel base.
        :param budget: total amount of queries to the oracle.
        :param steps: monotoincally increasing list of queries amounts.
        :param adaptive_oracle: whether to query the oracle using line search,
            or use only random inputs.
        :param use_labels_only: Whether to use only the labels in training.
        :param gamma: coefficient for the RBF kernel
        :param epsilon: initial learining rate.
        :param reg_lambda: regularization coefficient.
        :param eps_factor: update factor for the learning rate.
        Once in every epoch:
            learning_rate *= eps_factor
        :param epoch: how many iterations over the whole training data count as a n epoch.
        :param print_epoch:
        :param batch_size:
        :param num_passes: how many iterations over the whole data should we do in each training.
        :param random_seed:
        :return:
        """
        numpy.random.seed(random_seed)

        assert not (adaptive_oracle and steps)

        if steps:
            step = steps[0]
        else:
            step = budget

        if not adaptive_oracle:
            X_ext = utils.gen_query_set(self.num_features(), step)
        else:
            X_ext = utils.line_search_oracle(self.num_features(), step,
                                             self.query)

        X_repr = utils.gen_query_set(self.num_features(), num_repr)

        model = None
        idx = 0
        while budget > 0:
            idx += 1
            budget -= step

            y_ext = self.query(X_ext)

            if not use_labels_only:
                y_ext_p = self.query_probas(X_ext)
            else:
                # When this a baseline, take the labels from the query result
                # as one-hot vectors to be the probability vectors.
                num_classes = len(self.get_classes())
                y_ext_p = numpy.zeros((len(y_ext), num_classes))
                y_ext_p[numpy.arange(len(y_ext)), y_ext] = 1

            print y_ext_p

            print '{} ({})'.format(
                self.calculate_loss(X_ext, y_ext_p, reg_lambda),
                self.calculate_loss(X_ext, y_ext_p, 0))
            print >> sys.stderr, self.calculate_loss(X_ext, y_ext_p,
                                                     reg_lambda)

            model = build_model(X_repr,
                                False,
                                X_ext,
                                y_ext_p,
                                gamma=gamma,
                                epsilon=epsilon,
                                reg_lambda=reg_lambda,
                                num_passes=num_passes,
                                eps_factor=eps_factor,
                                epoch=epoch,
                                print_epoch=print_epoch,
                                batch_size=batch_size,
                                warm_start=model)

            mtype = "base" if use_labels_only else "extr"
            mode = "adapt-local" if steps \
                else "adapt-oracle" if adaptive_oracle \
                else "passive"
            save(
                model, 'experiments/KLR/{}/models/{}_{}_{}.pkl'.format(
                    self.dataset, mode, mtype, len(X_ext)))

            if X_train is not None and X_train.shape[1] == 2:
                bounds = [-1.1, 1.1, -1.1, 1.1]
                filename = 'experiments/KLR/{}/plots/{}_{}_{}_{}_boundary'.\
                    format(self.dataset, mode, mtype, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_train.values, y_train, bounds,
                                             filename)

                filename = 'experiments/KLR/{}/plots/{}_{}_{}_{}_boundary_ext'.\
                    format(self.dataset, mode, mtype, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_ext, y_ext, bounds, filename)

            if budget > 0:
                step = steps[idx] - steps[idx - 1]
                X_local = utils.gen_query_set(n=X_repr.shape[1],
                                              test_size=1000)
                Y_local = predict(model, X_local)

                assert len(pd.Series(Y_local).unique()) != 1

                adaptive_budget = (min(step, budget) * 3) / 4
                adaptive_budget += adaptive_budget % 2
                random_budget = min(step, budget) - adaptive_budget

                predict_func = lambda x: predict(model, x)
                samples = utils.line_search(X_local, Y_local,
                                            adaptive_budget / 2, predict_func)
                X_random = utils.gen_query_set(X_ext.shape[1], random_budget)
                X_ext = numpy.vstack((samples, X_random, X_ext))
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('data', type=str, help='a dataset')
    parser.add_argument('action', type=str, help='action to perform')
    parser.add_argument('num_repr', type=int, help='number of representers')
    parser.add_argument('budget', type=str, help='query budget')
    parser.add_argument('--num_passes', type=int, help='number of passes',
                        default=1000)
    parser.add_argument('--rounding', type=int, help='rounding digits')
    parser.add_argument('--steps', type=str, nargs='+', default=[],
                        help='adaptive active learning')
    parser.add_argument('--adaptive_oracle', dest='adaptive_oracle',
                        action='store_true',
                        help='adaptive active learning from oracle')
    parser.add_argument('--gamma', type=float,
                        help='RBF kernel hyper-parameter')
    parser.add_argument('--epsilon', type=float, help='learning rate',
                        default=0.1)
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument('--batch_size', type=int, help='batch size')
    args = parser.parse_args()

    dataset = args.data
    action = args.action
    num_repr = args.num_repr
    budget = args.budget
    num_passes = args.num_passes
    rounding = args.rounding
    steps = args.steps
    adaptive_oracle = args.adaptive_oracle
    gamma = args.gamma
    epsilon = args.epsilon
    seed = args.seed
    batch_size = args.batch_size

    np.random.seed(0)

    X_train, y_train, X_test, y_test, scaler = utils.prepare_data(dataset)
    X_test_u = utils.gen_query_set(X_test.shape[1], 1000)
    ext = LocalKernelExtractor(dataset, X_train, y_train, rounding=rounding)

    num_unknowns = num_repr * X_train.shape[1] + \
                   len(ext.get_classes()) * (num_repr + 1)
    try:
        budget = int(budget)
    except ValueError:
        budget = int(float(budget) * num_unknowns)

    try:
        steps = map(int, steps)
    except ValueError:
        steps = map(lambda x: int(float(x) * num_unknowns), steps)

    print >> sys.stderr, 'Data: {}, Action: {}, Budget:{}, Seed: {}'.\
        format(dataset, action, budget, seed)
    print >> sys.stderr, 'Number of unknowns: {}'.format(num_unknowns)

    if action == "train":
        ext.train(num_repr, X_test, y_test)
    elif action == "extract":
        if gamma is None:
            gamma = ext.get_gamma()

        print gamma
        ext.extract(X_train, y_train, num_repr, budget, gamma=gamma, steps=steps,
                    adaptive_oracle=adaptive_oracle, num_passes=num_passes,
                    epsilon=epsilon, random_seed=seed, batch_size=batch_size)
    elif action == "baseline":
        if gamma is None:
            gamma = ext.get_gamma()
        ext.extract(X_train, y_train, num_repr, budget, gamma=gamma, steps=steps,
                    adaptive_oracle=adaptive_oracle, baseline=True,
                    num_passes=num_passes, epsilon=epsilon, random_seed=seed,
                    batch_size=batch_size, reg_lambda=1e-40)
    elif action == "compare":
        ext.compare(X_test, X_test_u, scaler=None)
    def train(self, num_repr, X_test, y_test):
        X_train = self.X_train
        y_train = self.y_train
        y_train_p = np.zeros((len(y_train), len(self.classes)))
        y_train_p[np.arange(len(y_train)), y_train] = 1

        """
        assert num_repr >= len(self.get_classes())

        X_repr_bb = []
        class_counter = Counter(y_train)

        repr_per_class \
            = (num_repr + len(self.get_classes()) - 1) / len(self.get_classes())

        for (c, count) in sorted(class_counter.iteritems(), key=lambda _: _[1]):
            print c, count, repr_per_class
            reprs = X_train.values[np.where(y_train == c)[0][0:repr_per_class]]
            X_repr_bb.append(reprs)

        X_repr_bb = np.vstack(X_repr_bb)[0:num_repr]
        print '{} representers'.format(len(X_repr_bb))
        """

        X_repr_bb = X_train[0:num_repr].values

        """
        import math
        import matplotlib.pyplot as plt
        side = math.sqrt(X_repr_bb.shape[1])
        plt.figure()
        for i in range(len(X_repr_bb)):
            plt.subplot(2, len(X_repr_bb)/2, i + 1)
            plt.axis('off')
            image = X_repr_bb[i, :].reshape((side, side))
            plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
        plt.show()
        """
        """
        model_bb = krs.build_model(X_repr_bb, False, X_train, y_train_p,
                                   epsilon=epsilon, reg_lambda=1e-4,
                                   num_passes=num_passes, eps_factor=0.99,
                                   epoch=100, print_epoch=10, batch_size=1,
                                   gamma=gamma)

        y_pred_bb = krs.predict(model_bb, X_test)
        """

        best_model = None
        best_acc = 0
        best_gamma = None

        for gamma in [10**x for x in range(-10, 10)]:
            from sklearn.metrics.pairwise import rbf_kernel
            from sklearn.linear_model import LogisticRegression
            X_train_ker = rbf_kernel(X_train, X_repr_bb, gamma=gamma)
            model = LogisticRegression(multi_class='multinomial',
                                       solver='lbfgs').\
                fit(X_train_ker, y_train)

            y_pred = model.predict(rbf_kernel(X_test, X_repr_bb, gamma=gamma))
            acc = accuracy_score(y_test, y_pred)

            if acc > best_acc:
                best_acc = acc
                best_gamma = gamma
                best_model = model

        W = best_model.coef_.T
        b = best_model.intercept_

        if len(self.classes) == 2:
            W = np.hstack((np.zeros((len(X_repr_bb), 1)), W))
            b = np.hstack((0, b))
        W = theano.shared(
                value=W,
                name='W',
                borrow=True
            )
        b = theano.shared(
                value=b,
                name='b',
                borrow=True
            )

        model_bb = krs.KernelLog(T.matrix('x'), best_gamma, len(self.classes),
                                 X_repr_bb, learn_Y=False, W=W, b=b)
        y_pred_bb = krs.predict(model_bb, X_test)

        print 'Best Gamma: {}'.format(best_gamma)
        print 'Y_test: {}'.format(Counter(y_test))
        print 'Y_pred: {}'.format(Counter(y_pred_bb))

        acc = accuracy_score(y_test, y_pred_bb)
        print 'Training accuracy: {}'.format(acc)
        print >> sys.stderr, 'Training accuracy: {}'.format(acc)

        X_test_u = utils.gen_query_set(X_test.shape[1], 10000)
        y_pred_u = krs.predict(model_bb, X_test_u)

        print 'Y_pred_u: {}'.format(Counter(y_pred_u))

        if X_train.shape[1] == 2:
            bounds = [-1.1, 1.1, -1.1, 1.1]
            X_train = X_train.values
            utils.plot_decision_boundary(
                lambda x: krs.predict(model_bb, x), X_train, y_train, bounds)

        krs.save(model_bb,
                 'experiments/KLR/{}/models/oracle.pkl'.format(self.dataset))
Exemple #9
0
    def train(self, num_repr, X_test, y_test):
        X_train = self.X_train
        y_train = self.y_train
        y_train_p = np.zeros((len(y_train), len(self.classes)))
        y_train_p[np.arange(len(y_train)), y_train] = 1

        """
        assert num_repr >= len(self.get_classes())

        X_repr_bb = []
        class_counter = Counter(y_train)

        repr_per_class \
            = (num_repr + len(self.get_classes()) - 1) / len(self.get_classes())

        for (c, count) in sorted(class_counter.iteritems(), key=lambda _: _[1]):
            print c, count, repr_per_class
            reprs = X_train.values[np.where(y_train == c)[0][0:repr_per_class]]
            X_repr_bb.append(reprs)

        X_repr_bb = np.vstack(X_repr_bb)[0:num_repr]
        print '{} representers'.format(len(X_repr_bb))
        """

        X_repr_bb = X_train[0:num_repr].values

        """
        import math
        import matplotlib.pyplot as plt
        side = math.sqrt(X_repr_bb.shape[1])
        plt.figure()
        for i in range(len(X_repr_bb)):
            plt.subplot(2, len(X_repr_bb)/2, i + 1)
            plt.axis('off')
            image = X_repr_bb[i, :].reshape((side, side))
            plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
        plt.show()
        """
        """
        model_bb = krs.build_model(X_repr_bb, False, X_train, y_train_p,
                                   epsilon=epsilon, reg_lambda=1e-4,
                                   num_passes=num_passes, eps_factor=0.99,
                                   epoch=100, print_epoch=10, batch_size=1,
                                   gamma=gamma)

        y_pred_bb = krs.predict(model_bb, X_test)
        """

        best_model = None
        best_acc = 0
        best_gamma = None

        for gamma in [10**x for x in range(-10, 10)]:
            from sklearn.metrics.pairwise import rbf_kernel
            from sklearn.linear_model import LogisticRegression
            X_train_ker = rbf_kernel(X_train, X_repr_bb, gamma=gamma)
            model = LogisticRegression(multi_class='multinomial',
                                       solver='lbfgs').\
                fit(X_train_ker, y_train)

            y_pred = model.predict(rbf_kernel(X_test, X_repr_bb, gamma=gamma))
            acc = accuracy_score(y_test, y_pred)

            if acc > best_acc:
                best_acc = acc
                best_gamma = gamma
                best_model = model

        W = best_model.coef_.T
        b = best_model.intercept_

        if len(self.classes) == 2:
            W = np.hstack((np.zeros((len(X_repr_bb), 1)), W))
            b = np.hstack((0, b))
        W = theano.shared(
                value=W,
                name='W',
                borrow=True
            )
        b = theano.shared(
                value=b,
                name='b',
                borrow=True
            )

        model_bb = krs.KernelLog(T.matrix('x'), best_gamma, len(self.classes),
                                 X_repr_bb, learn_kernel_base=False, W=W, b=b)
        y_pred_bb = krs.predict(model_bb, X_test)

        print 'Best Gamma: {}'.format(best_gamma)
        print 'Y_test: {}'.format(Counter(y_test))
        print 'Y_pred: {}'.format(Counter(y_pred_bb))

        acc = accuracy_score(y_test, y_pred_bb)
        print 'Training accuracy: {}'.format(acc)
        print >> sys.stderr, 'Training accuracy: {}'.format(acc)

        X_test_u = utils.gen_query_set(X_test.shape[1], 10000)
        y_pred_u = krs.predict(model_bb, X_test_u)

        print 'Y_pred_u: {}'.format(Counter(y_pred_u))

        if X_train.shape[1] == 2:
            bounds = [-1.1, 1.1, -1.1, 1.1]
            X_train = X_train.values
            utils.plot_decision_boundary(
                lambda x: krs.predict(model_bb, x), X_train, y_train, bounds)

        krs.save(model_bb,
                 'experiments/KLR/{}/models/oracle.pkl'.format(self.dataset))
Exemple #10
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('data', type=str, help='a dataset')
    parser.add_argument('action', type=str, help='action to perform')
    parser.add_argument('num_repr', type=int, help='number of representers')
    parser.add_argument('budget', type=str, help='query budget')
    parser.add_argument('--num_passes', type=int, help='number of passes',
                        default=1000)
    parser.add_argument('--rounding', type=int, help='rounding digits')
    parser.add_argument('--steps', type=str, nargs='+', default=[],
                        help='adaptive active learning')
    parser.add_argument('--adaptive_oracle', dest='adaptive_oracle',
                        action='store_true',
                        help='adaptive active learning from oracle')
    parser.add_argument('--gamma', type=float,
                        help='RBF kernel hyper-parameter')
    parser.add_argument('--epsilon', type=float, help='learning rate',
                        default=0.1)
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument('--batch_size', type=int, help='batch size')
    args = parser.parse_args()

    dataset = args.data
    action = args.action
    num_repr = args.num_repr
    budget = args.budget
    num_passes = args.num_passes
    rounding = args.rounding
    steps = args.steps
    adaptive_oracle = args.adaptive_oracle
    gamma = args.gamma
    epsilon = args.epsilon
    seed = args.seed
    batch_size = args.batch_size

    np.random.seed(0)

    X_train, y_train, X_test, y_test, scaler = utils.prepare_data(dataset)
    X_test_u = utils.gen_query_set(X_test.shape[1], 1000)
    ext = LocalKernelExtractor(dataset, X_train, y_train, rounding=rounding)

    num_unknowns = num_repr * X_train.shape[1] + \
                   len(ext.get_classes()) * (num_repr + 1)
    try:
        budget = int(budget)
    except ValueError:
        budget = int(float(budget) * num_unknowns)

    try:
        steps = map(int, steps)
    except ValueError:
        steps = map(lambda x: int(float(x) * num_unknowns), steps)

    print >> sys.stderr, 'Data: {}, Action: {}, Budget:{}, Seed: {}'.\
        format(dataset, action, budget, seed)
    print >> sys.stderr, 'Number of unknowns: {}'.format(num_unknowns)

    if action == "train":
        ext.train(num_repr, X_test, y_test)
    elif action == "extract":
        if gamma is None:
            gamma = ext.get_gamma()

        print gamma
        ext.extract(X_train, y_train, num_repr, budget, gamma=gamma, steps=steps,
                    adaptive_oracle=adaptive_oracle, num_passes=num_passes,
                    epsilon=epsilon, random_seed=seed, batch_size=batch_size)
    elif action == "baseline":
        if gamma is None:
            gamma = ext.get_gamma()
        ext.extract(X_train, y_train, num_repr, budget, gamma=gamma, steps=steps,
                    adaptive_oracle=adaptive_oracle, use_labels_only=True,
                    num_passes=num_passes, epsilon=epsilon, random_seed=seed,
                    batch_size=batch_size, reg_lambda=1e-40)
    elif action == "compare":
        ext.compare(X_test, X_test_u, scaler=None)
    def extract(self,
                X_train,
                y_train,
                num_repr,
                budget,
                steps=[],
                adaptive_oracle=False,
                baseline=False,
                gamma=1,
                epsilon=1e-2,
                reg_lambda=1e-16,
                eps_factor=0.99,
                epoch=100,
                print_epoch=10,
                batch_size=1,
                num_passes=1000,
                random_seed=0):

        numpy.random.seed(random_seed)

        assert not (adaptive_oracle and steps)

        if steps:
            step = steps[0]
        else:
            step = budget

        if not adaptive_oracle:
            X_ext = utils.gen_query_set(self.num_features(), step)
        else:
            X_ext = utils.line_search_oracle(self.num_features(), step,
                                             self.query)

        X_repr = utils.gen_query_set(self.num_features(), num_repr)

        model = None
        idx = 0
        while budget > 0:
            idx += 1
            budget -= step

            y_ext = self.query(X_ext)

            if not baseline:
                y_ext_p = self.query_probas(X_ext)
            else:
                num_classes = len(self.get_classes())
                y_ext_p = numpy.zeros((len(y_ext), num_classes))
                y_ext_p[numpy.arange(len(y_ext)), y_ext] = 1

            print y_ext_p

            print '{} ({})'.format(
                self.calculate_loss(X_ext, y_ext_p, reg_lambda),
                self.calculate_loss(X_ext, y_ext_p, 0))
            print >> sys.stderr, self.calculate_loss(X_ext, y_ext_p,
                                                     reg_lambda)

            model = build_model(X_repr,
                                False,
                                X_ext,
                                y_ext_p,
                                gamma=gamma,
                                epsilon=epsilon,
                                reg_lambda=reg_lambda,
                                num_passes=num_passes,
                                eps_factor=eps_factor,
                                epoch=epoch,
                                print_epoch=print_epoch,
                                batch_size=batch_size,
                                warm_start=model)

            mtype = "base" if baseline else "extr"
            mode = "adapt-local" if steps \
                else "adapt-oracle" if adaptive_oracle \
                else "passive"
            save(
                model, 'experiments/KLR/{}/models/{}_{}_{}.pkl'.format(
                    self.dataset, mode, mtype, len(X_ext)))

            if X_train is not None and X_train.shape[1] == 2:
                bounds = [-1.1, 1.1, -1.1, 1.1]
                filename = 'experiments/KLR/{}/plots/{}_{}_{}_{}_boundary'.\
                    format(self.dataset, mode, mtype, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_train.values, y_train, bounds,
                                             filename)

                filename = 'experiments/KLR/{}/plots/{}_{}_{}_{}_boundary_ext'.\
                    format(self.dataset, mode, mtype, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_ext, y_ext, bounds, filename)

            if budget > 0:
                step = steps[idx] - steps[idx - 1]
                X_local = utils.gen_query_set(n=X_repr.shape[1],
                                              test_size=1000)
                Y_local = predict(model, X_local)

                assert len(pd.Series(Y_local).unique()) != 1

                adaptive_budget = (min(step, budget) * 3) / 4
                adaptive_budget += adaptive_budget % 2
                random_budget = min(step, budget) - adaptive_budget

                predict_func = lambda x: predict(model, x)
                samples = utils.line_search(X_local, Y_local,
                                            adaptive_budget / 2, predict_func)
                X_random = utils.gen_query_set(X_ext.shape[1], random_budget)
                X_ext = numpy.vstack((samples, X_random, X_ext))
Exemple #12
0
    def extract(self, X_train, y_train, budget, steps=[],
                adaptive_oracle=False, baseline=False, epsilon=1e-1,
                num_passes=1000, reg_lambda=1e-8, eps_factor=0.99, epoch=100,
                print_loss=True, print_epoch=10, batch_size=20, random_seed=0):

        numpy.random.seed(random_seed)

        assert not (adaptive_oracle and steps)

        if steps:
            step = steps[0]
        else:
            step = budget

        if not adaptive_oracle:
            X_ext = utils.gen_query_set(X_train.shape[1], step)
        else:
            X_ext = utils.line_search_oracle(X_train.shape[1], step, self.query)

        idx = 0
        while budget > 0:
            idx += 1
            budget -= step

            y_ext = self.query(X_ext)

            if not baseline:
                y_ext_p = self.query_probas(X_ext)
            else:
                num_classes = len(self.get_classes())
                y_ext_p = numpy.zeros((len(y_ext), num_classes))
                y_ext_p[numpy.arange(len(y_ext)), y_ext] = 1

            # Loss with correct parameters:
            print self.calculate_loss(X_ext, y_ext_p, reg_lambda)
            print >> sys.stderr, self.calculate_loss(X_ext, y_ext_p, reg_lambda)

            model = build_model(self.hidden_nodes, X_ext, y_ext_p,
                                epsilon=epsilon, num_passes=num_passes,
                                reg_lambda=reg_lambda, epoch=epoch,
                                eps_factor=eps_factor, print_loss=print_loss,
                                print_epoch=print_epoch, batch_size=batch_size)

            m_type = "base" if baseline else "extr"
            mode = "adapt-local" if steps \
                else "adapt-oracle" if adaptive_oracle \
                else "passive"

            save(model, 'experiments/{}/models/{}_{}_{}_{}_{}.pkl'.
                 format(self.dataset, mode, m_type,
                        self.hidden_nodes, len(X_ext), random_seed))

            if X_train is not None and X_train.shape[1] == 2:
                bounds = [-1.1, 1.1, -1.1, 1.1]
                filename = 'experiments/{}/plots/{}_{}_{}_{}_{}_boundary'.\
                    format(self.dataset, mode, m_type,
                           self.hidden_nodes, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_train.values, y_train,
                                             bounds, filename)

                filename = 'experiments/{}/plots/{}_{}_{}_{}_{}_boundary_ext'.\
                    format(self.dataset, mode, m_type,
                           self.hidden_nodes, len(X_ext), random_seed)
                utils.plot_decision_boundary(lambda x: predict(model, x),
                                             X_ext, y_ext, bounds, filename)

            if budget > 0:
                step = steps[idx] - steps[idx-1]
                X_local = utils.gen_query_set(n=X_ext.shape[1], test_size=1000)
                Y_local = predict(model, X_local)

                assert len(pd.Series(Y_local).unique()) != 1

                adaptive_budget = (min(step, budget)*3)/4
                adaptive_budget += adaptive_budget % 2
                random_budget = min(step, budget) - adaptive_budget

                predict_func = lambda x: predict(model, x)
                samples = utils.line_search(X_local, Y_local, adaptive_budget/2,
                                            predict_func)
                X_random = utils.gen_query_set(X_ext.shape[1], random_budget)
                X_ext = numpy.vstack((samples, X_random, X_ext))
Exemple #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('data', type=str, help='a dataset')
    parser.add_argument('hidden_nodes', type=int, help='number of hidden nodes')
    parser.add_argument('action', type=str, help='action to perform')
    parser.add_argument('budget', type=str, help='query budget')
    parser.add_argument('--num_passes', type=int, help='number of passes',
                        default=1000)
    parser.add_argument('--epsilon', type=float, help='learning rate',
                        default=0.1)
    parser.add_argument('--rounding', type=int, help='rounding digits')
    parser.add_argument('--steps', type=str, nargs='+', default=[],
                        help='adaptive active learning')
    parser.add_argument('--adaptive_oracle', dest='adaptive_oracle',
                        action='store_true',
                        help='adaptive active learning from oracle')
    parser.add_argument('--force_reg', dest='force_reg',
                        action='store_true',
                        help='train a regression layer only')
    parser.add_argument('--batch_size', type=int, help='batch size', default=1)
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    args = parser.parse_args()

    dataset = args.data
    action = args.action
    hidden_nodes = args.hidden_nodes
    budget = args.budget
    num_passes = args.num_passes
    rounding = args.rounding
    steps = args.steps
    adaptive_oracle = args.adaptive_oracle
    epsilon = args.epsilon
    batch_size = args.batch_size
    force_reg = args.force_reg
    seed = args.seed

    np.random.seed(0)

    X_train, y_train, X_test, y_test, scaler = utils.prepare_data(dataset)

    if force_reg:
        dataset += "_reg"

    ext = LocalPerceptronExtractor(dataset, hidden_nodes, X_train, y_train,
                                   rounding=rounding, force_reg=force_reg)

    num_unknowns = hidden_nodes * (X_train.shape[1] + 1) + \
                   len(ext.get_classes()) * (hidden_nodes + 1)

    try:
        budget = int(budget)
    except ValueError:
        budget = int(float(budget) * num_unknowns)

    try:
        steps = map(int, steps)
    except ValueError:
        steps = map(lambda x: int(float(x) * num_unknowns), steps)

    print >> sys.stderr, 'Data: {}, Action: {}, Budget:{}, Seed: {}'.\
        format(dataset, action, budget, seed)
    print >> sys.stderr, 'Number of unknowns: {}'.format(num_unknowns)

    if action == "train":
        ext.train(X_test, y_test, num_passes=num_passes)
    elif action == "extract":
        ext.extract(X_train, y_train, budget, steps=steps,
                    adaptive_oracle=adaptive_oracle, num_passes=num_passes,
                    epsilon=epsilon, batch_size=batch_size, random_seed=seed)
    elif action == "baseline":
        ext.extract(X_train, y_train, budget, steps=steps,
                    adaptive_oracle=adaptive_oracle, baseline=True,
                    num_passes=num_passes, epsilon=epsilon,
                    batch_size=batch_size, random_seed=seed,
                    reg_lambda=1e-40)
    elif action == "compare":
        X_test_u = utils.gen_query_set(X_test.shape[1], 10000)
        ext.compare(X_test, X_test_u, force_reg=force_reg)
    else:
        raise ValueError('Unknown action')