def uploaded_data(content=None): if content is not None: df = utils.parse_data(content) freq_plot, time_plot = utils.generate_plot(df) return freq_plot, time_plot else: raise dash.exceptions.PreventUpdate
def update_graph(selected_graph, selected_channel, selected_centrality, selectedCommunity, selectedData): ctx = dash.callback_context button_id = ctx.triggered[0]['prop_id'].split('.')[0] print(button_id) graph_label = selected_graph.rsplit('/', 1)[-1] if button_id == 'graphs': global df_neo4j query = "match (nodes:{}) RETURN nodes".format(graph_label.lower()) graph = py2neo.Graph(bolt=True, host='localhost', user='******', password='******') df_neo4j = graph.run(query).to_data_frame() persons = [] tempo_fig = generate_plot(selected_graph) #if not ctx.triggered or button_id in ['graphs', 'ddn_channels']: nodelink_fig = neograph(selected_graph, selected_channel, selected_centrality, selectedCommunity) if button_id == 'transaction_plot': print('Filter operation') start_date = selectedData['range']['x'][0] end_date = selectedData['range']['x'][1] nodelink_fig = neograph_filtered(selected_graph, selected_channel, selected_centrality, selectedCommunity, start_date, end_date) return dash.dash.no_update, nodelink_fig centrality = selected_channel[:-1].lower() + selected_centrality community = selected_channel[:-1].lower() + selectedCommunity if selected_centrality != 'None': persons = df_neo4j.nodes.apply(pd.Series).sort_values([centrality]).pid if selectedCommunity != 'None': persons = df_neo4j.nodes.apply(pd.Series).sort_values([community]).pid if selected_centrality != 'None' and selectedCommunity != 'None': persons = df_neo4j.nodes.apply(pd.Series).sort_values( [community, centrality]).pid #if button_id in ['ddn_centrality', 'ddn_community']: tempo_fig.update_layout(yaxis=dict(categoryarray=persons)) #return tempo_fig, dash.dash.no_update return tempo_fig, nodelink_fig
for epoch in range(num_epochs): for batch_i, (real_images, _) in enumerate(train_loader): batch_size = real_images.size(0) # transform real image data from [0, 1) to [-1, 1) real_images = real_images * 2 - 1 d_loss = train_discriminator(real_images, d_optim, batch_size, z_size) g_loss = train_generator(g_optim, batch_size, z_size) # Print some loss stats if batch_i % print_every == 0: # print discriminator and generator loss print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'. format(epoch + 1, num_epochs, d_loss.item(), g_loss.item())) losses.append((d_loss.item(), g_loss.item())) # generate and save sample, fake images G.eval() # eval mode for generating samples samples_z = G(fixed_z) samples.append(samples_z) G.train() # back to train mode with open('train_samples.pkl', 'wb') as f: pkl.dump(samples, f) generate_plot(losses)
startTime = time.time() #1. Initialize Tree and growth print("Initializing Fixed Node Tree.....") tree = Tree(start, goal, obstacles, xmin, ymin, xmax, ymax, maxNumNodes, resolution, eta, gamma, epsilon) #2. Set pcurID = 0; by default in Tree instantiation #3. Get Solution Path solPath, solPathID = tree.initGrowth(exhaust=True, FN=True) #################### # Plot if plot_and_save_gif: im = utils.generate_plot(tree, solPath) # Appending to list of images images.append(im) #################### #4. Init movement()-->> update pcurID solPath, solPathID, dt = tree.nextSolNode(solPath, solPathID) #5. Begin replanning loop, while pcur is not goal, do... while np.linalg.norm(tree.nodes[tree.pcurID, 0:2] - tree.goal) > tree.epsilon: if plot_and_save_gif: im = utils.generate_plot(tree, solPath) # Appending to list of images images.append(im) #6. Obstacle Updates
raw_path = 'F:/onNotOn_raw/zy_onNoton_raw.p' # utility directory to save the pyplots radar_3dscatter_path = '/Users/hanfei/figures/plots' radar_data = list(pickle.load(open(radarData_path, 'rb')).items()) radar_data.sort(key=lambda x: x[0]) # sort by timestamp videoData_list = os.listdir(videoData_path) videoData_timestamps = list( map(lambda x: float(x.strip('.jpg')), videoData_list)) style.use('fivethirtyeight') white_color = 'rgb(255, 255, 255)' black_color = 'rgb(0, 0, 0)' red_color = 'rgb(255, 0, 0)' DBSCAN_esp = 0.2 DBSCAN_minSamples = 3 # input data for the classifier that has the shape n*4*100, n being the number of samples num_padding = 50 data_for_classifier = np.zeros((len(radar_data), num_padding, 4)) data_for_classifier_flattened = np.zeros( (len(radar_data), 1, 4 * num_padding + 1)) fnt = ImageFont.truetype("Arial.ttf", 16) generate_plot(radar_data, videoData_timestamps, videoData_path, DBSCAN_esp, DBSCAN_minSamples, num_padding, fnt, radar_3dscatter_path, mergedImg_path)
for reinforcement_factor in reinforcement_factor_range: results.append( parse_result(working_directory(traffic, '', max_cycles, num_nodes, 'OddEven', 'ACO', data_packet_injection_rate, aco_selection_alpha, reinforcement_factor), bench=traffic)) csv_file_name = 'results/synthesized_general_' + str( data_packet_injection_rate) + '.csv' results_to_csv(results, csv_file_name) generate_plot( csv_file_name, 'results/synthesized_simulation_time_' + str(data_packet_injection_rate), 'Benchmark', 'Simulation Time (Seconds)', 'Algorithm', 'Simulation Time (Seconds)') generate_plot( csv_file_name, 'results/synthesized_throughput_' + str(data_packet_injection_rate), 'Benchmark', 'Throughput', 'Algorithm', 'Throughput') generate_plot( csv_file_name, 'results/synthesized_average_packet_delay_' + str(data_packet_injection_rate), 'Benchmark', 'Average Packet Delay', 'Algorithm', 'Average Packet Delay') generate_plot( csv_file_name, 'results/synthesized_payload_throughput_' + str(data_packet_injection_rate), 'Benchmark', 'Payload Throughput',
parser = ArgumentParser(formatter_class=RawTextHelpFormatter) parser.add_argument("file", metavar="file", type=str, help="Google takeout JSON file.") parser.add_argument("-s", "--size", dest="size", type=int, required=False, help="Number of top sites to be displayed.", default=20) parser.add_argument("-d", "--days", dest="days", type=int, required=False, help="Number of x last days of data to be displayed.", default=60) args = parser.parse_args() print("(1/2): Processing data") data = [] data.append(chart_json(args.file, args.days)) data.append(hist_json(args.file, args.days)) print("(2/2): Generating graph") generate_plot(data, args.size, args.days)
def train(data, labels, model): history = model.fit(data, labels, epochs=150, batch_size=10) generate_plot(history, 'loss') model.save(MODEL_PATH)