Exemple #1
0
def test_generate():
    FIVE_MB = 5 * 1024 * 1024
    eq(len(''.join(utils.generate_random(0))), 0)
    eq(len(''.join(utils.generate_random(1))), 1)
    eq(len(''.join(utils.generate_random(FIVE_MB - 1))), FIVE_MB - 1)
    eq(len(''.join(utils.generate_random(FIVE_MB))), FIVE_MB)
    eq(len(''.join(utils.generate_random(FIVE_MB + 1))), FIVE_MB + 1)
Exemple #2
0
 def setup(self, input_n, output, hidden_size):
     self.input_n = input_n
     self.input_cells = [1.0] * input_n
     self.output_m = output
     self.output_cells = [0.0] * output
     self.hidden_set = hidden_size
     self.hidden_result = [0.0] * hidden_size
     self.input_w = utils.generate_random(input_n, hidden_size)
     self.output_w = utils.generate_random(hidden_size, output)
     self.input_b = numpy.random.random(hidden_size)
     self.output_b = numpy.random.random(output)
     self.input_delta = [0.0] * self.input_n
     self.output_delta = [0.0] * self.hidden_set
Exemple #3
0
def panel_vouchers():
    form = get_voucher_form(request.form, ShopData.query.all())

    if request.method == 'POST' and form.validate():
        for_id = form.data['id']
        try:
            uses = int(form.data['uses'])
            amount = int(form.data['amount'])
        except Exception as e:
            flash('Invalid input (did you provide text instead of numbers?)', 'danger')
            return redirect(url_for('panel_vouchers'))

        vouchers = []
        for i in range(amount):
            random = generate_random(8)
            vouchers.append(random)
            voucher = Voucher()
            voucher.key = random
            voucher.offer = for_id
            voucher.uses = uses
            database.session.add(voucher)

        database.session.commit()

        return render_template('views/panel.html', tab='vouchers', admins=admins, form=form, vouchers=vouchers)

    return render_template('views/panel.html', tab='vouchers', admins=admins, form=form)
Exemple #4
0
 def __init__(self, name, email):
     self.name = name
     self.email = email
     self.exp_time = get_epoch_time() + (30 * 60 * 1000)  # 30 minutes
     self.secret_key = str(hashlib.sha256(bytes(generate_random(32), 'utf-8')).hexdigest())
Exemple #5
0
def main(_):
    tf.logging.set_verbosity(_verbosity_levels[tf.flags.FLAGS.verbosity])

    params = {
        'criterion': tf.flags.FLAGS.criterion,
        'max_iter': tf.flags.FLAGS.maxiter,
        'kernel': tf.flags.FLAGS.kernel,
        'bandwidth': tf.flags.FLAGS.bandwidth,
        'n_clusters': tf.flags.FLAGS.nclusters,
        'batch_size': tf.flags.FLAGS.batchsize
    }

    data = generate_random(100, 500)

    # assert os.path.exists(tf.flags.FLAGS.data)

    if tf.flags.FLAGS.method in methods:

        cl = methods[tf.flags.FLAGS.method](**remove_empty(params))

        labels = cl.fit(data)
        centroids = cl.centroids
        history = cl.history

    else:
        history = load(os.path.join(tf.flags.FLAGS.save, 'history.npy'))
        centroids = load(os.path.join(tf.flags.FLAGS.save, 'centroids.npy'))
        labels = load(os.path.join(tf.flags.FLAGS.save, 'labels.npy'))

        if tf.flags.FLAGS.method == 'visualize':
            assert len(history) > 1 \
                   and history[0].shape[0] == labels.shape[0], 'Invalid ' \
                                                               'history'
            plot(history, data, labels, centroids, draw_lines=False)

        elif tf.flags.FLAGS.method == 'visualize_animated':
            assert len(history) > 1 \
                   and history[0].shape[0] == labels.shape[0], 'Invalid ' \
                                                               'history'
            animated_plot(history, labels)

        else:
            raise ValueError('--mode parameter must either '
                             'be < means_shift >'
                             '< mini_batch_mean_shift >,'
                             '< kmeans > or < mini_batch_kmeans >.')

        return

    if history is None:
        tf.logging.warn('Data is too large to visualize.')
    elif data.shape[1] != 2:
        tf.logging.warn('Data must be 2 dimensional to visualize.')
    else:
        tf.logging.info('Creating plot for history visualization.')

        plot(history, data, labels, centroids, draw_lines=False)

        save(os.path.join(tf.flags.FLAGS.save, 'history.npy'), history)
    save(os.path.join(tf.flags.FLAGS.save, 'centroids.npy'), centroids)
    save(os.path.join(tf.flags.FLAGS.save, 'labels.npy'), labels)
Exemple #6
0
def get_neighbor(result,start,end,step,typ,p,conf):
    xi = utils.generate_random(result,start,end,step,typ,p,conf)
    while not in_neighborhood(result, xi, end, start, r, len(conf), step, typ, conf):
        xi = utils.generate_random(result,start,end,step,typ,p,conf)
    return xi
Exemple #7
0
    #  funcs = (bubble_sort, selection_sort, insertion_sort, quick_sort,
    #  quick_sort_3partition, heap_sort, merge_sort, merge_sort_fastest,
    #  counting_sort, bucket_sort, bucket_sort_array, radix_sort)

    times = []
    #  for f in funcs:
    #  n, t = utils.print_func_run_time(length, f, utils.generate_random(int(n))[0])
    #  #  times.append((n, t))
    #  #  times.sort(key = lambda x: x[1])
    #  #  for n, t in times:
    #  #  print(n, t)

    times.append(
        utils.print_func_run_time(length, bubble_sort,
                                  utils.generate_random(n)[0]))
    times.append(
        utils.print_func_run_time(length, selection_sort,
                                  utils.generate_random(n)[0]))
    times.append(
        utils.print_func_run_time(length, insertion_sort,
                                  utils.generate_random(n)[0]))
    times.append(
        utils.print_func_run_time(length, quick_sort,
                                  utils.generate_random(n)[0]))
    times.append(
        utils.print_func_run_time(length, quick_sort_3partition,
                                  utils.generate_random(n)[0]))
    times.append(
        utils.print_func_run_time(length, heap_sort,
                                  utils.generate_random(n)[0]))