def __init__(
      self, sketch_folder_path, sketch_index_file, \
      image_gallery_folder_path, mapping_file_path, sub_sample=None \
    ):

        self.sketches = []
        self.images = []
        self.sketch_class = []
        self.image_class = []
        self.random_flag = []

        class_map = get_class_map(sketch_folder_path + "/" + mapping_file_path)
        structured_images = load_images(image_gallery_folder_path)
        index_file_path = sketch_folder_path + "/" + sketch_index_file

        with open(index_file_path, "r") as sketch_file:
            # Proceded to reduce the size of the source datasets to sub_sample due to hardware limitations
            if sub_sample is not None:
                sketch_lines = random.sample(sketch_file.readlines(),
                                             sub_sample)
            else:
                sketch_lines = sketch_file.readlines()

            for line in sketch_lines:
                sketch_path, sketch_idx = line.split()
                sketch_path = sketch_folder_path + "/" + sketch_path
                sketch_class = class_map[sketch_idx]

                self.sketches.append(get_processed_img(sketch_path))
                self.sketch_class.append(int(sketch_idx))

                random_flag = random.random() <= 0.5
                if random_flag:
                    random_image = sample(structured_images[sketch_class],
                                          1)[0]
                    image_path = f"{image_gallery_folder_path}/{sketch_class}/{random_image}"

                    self.images.append(get_processed_img(image_path))
                    self.image_class.append(int(sketch_idx))
                    self.random_flag.append(1)
                else:
                    while True:
                        random_class_idx = str(random.randint(0, 249))
                        if random_class_idx != sketch_idx:

                            random_class = class_map[random_class_idx]
                            random_image = sample(
                                structured_images[random_class], 1)[0]
                            image_path = f"{image_gallery_folder_path}/{random_class}/{random_image}"

                            self.images.append(get_processed_img(image_path))
                            self.image_class.append(int(random_class_idx))
                            self.random_flag.append(0)
                            break
Exemple #2
0
    def __init__(
      self, sketch_folder_path, sketch_index_file, \
      image_gallery_folder_path, mapping_file_path, use_triplets = False, sub_sample=None \
    ):

        self.use_triplets = use_triplets
        self.sketches = []
        self.classes = []
        self.negative_classes = []
        self.positive_images = []
        if use_triplets:
            self.negative_images = []

        class_map = get_class_map(sketch_folder_path + "/" + mapping_file_path)
        structured_images = load_images(image_gallery_folder_path)
        index_file_path = sketch_folder_path + "/" + sketch_index_file

        with open(index_file_path, "r") as sketch_file:
            # Proceded to reduce the size of the source datasets to sub_sample due to hardware limitations
            if sub_sample is not None:
                sketch_lines = random.sample(sketch_file.readlines(),
                                             sub_sample)
            else:
                sketch_lines = sketch_file.readlines()
            for line in sketch_lines:
                sketch_path, sketch_idx = line.split()
                sketch_path = sketch_folder_path + "/" + sketch_path
                sketch_class = class_map[sketch_idx]

                positive_random_image = sample(structured_images[sketch_class],
                                               1)[0]
                positive_image_path = f"{image_gallery_folder_path}/{sketch_class}/{positive_random_image}"

                self.sketches.append(get_processed_img(sketch_path))
                self.positive_images.append(
                    get_processed_img(positive_image_path))
                self.classes.append(int(sketch_idx))

                if use_triplets:
                    while True:
                        negative_random_class_idx = str(random.randint(0, 249))
                        if negative_random_class_idx != sketch_idx:

                            negative_class = class_map[
                                negative_random_class_idx]
                            negative_random_image = sample(
                                structured_images[negative_class], 1)[0]
                            negative_image_path = f"{image_gallery_folder_path}/{negative_class}/{negative_random_image}"
                            self.negative_classes.append(
                                int(negative_random_class_idx))
                            self.negative_images.append(
                                get_processed_img(negative_image_path))
                            break
import numpy as np
import os

import utils
import config

detection_graph = tf.Graph()

with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(config.mask_model_infer_path, mode='rb') as graph_file:
        serialized_graph = graph_file.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def)

class_map = utils.get_class_map(config.class_map_file)

sess = tf.Session(graph=detection_graph)

input_ = sess.graph.get_tensor_by_name("import/image_tensor:0")
boxes = sess.graph.get_tensor_by_name("import/detection_boxes:0")
scores = sess.graph.get_tensor_by_name("import/detection_scores:0")
classes = sess.graph.get_tensor_by_name("import/detection_classes:0")
masks = sess.graph.get_tensor_by_name("import/detection_masks:0")

count = 0

app = Flask(__name__)


@app.route("/", methods=['POST'])
Exemple #4
0
def index():

    print('Request-form', list(request.form.keys()), file=sys.stderr)
    #print('Request-form-name',request.form['name'],file=sys.stderr)
    # print('Request-form-image',request.form['image'],file=sys.stderr)

    #image_name = request.form['name']
    image_string = request.form['image']
    #image_bytes = bytes(image_string,'utf-8')
    #image_decoded = base64.decodestring(image_string)

    image = Image.open(BytesIO(base64.b64decode(image_string)))

    # rotated_image = image.rotate(270,expand=True)

    # input_array = np.array(rotated_image)

    input_array = np.array(image)

    input_array = np.expand_dims(input_array, axis=0)

    detection_graph = tf.Graph()

    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(config.mask_model_infer_path,
                            mode='rb') as graph_file:
            serialized_graph = graph_file.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def)

    class_map = utils.get_class_map(config.class_map_file)

    with tf.Session(graph=detection_graph) as sess:
        input_ = sess.graph.get_tensor_by_name("import/image_tensor:0")
        boxes = sess.graph.get_tensor_by_name("import/detection_boxes:0")
        scores = sess.graph.get_tensor_by_name("import/detection_scores:0")
        classes = sess.graph.get_tensor_by_name("import/detection_classes:0")
        masks = sess.graph.get_tensor_by_name("import/detection_masks:0")

        #result_array = detect.run(input_array)

        (_boxes, _scores, _classes,
         _masks) = sess.run([boxes, scores, classes, masks],
                            feed_dict={input_: input_array})

    _boxes = np.squeeze(_boxes, axis=0)
    _scores = np.squeeze(_scores, axis=0)
    _classes = np.squeeze(_classes, axis=0)
    _masks = np.squeeze(_masks, axis=0)
    input_array = np.squeeze(input_array, axis=0)

    detections = utils.get_detections(_scores, config.threshold_score)

    utils.draw_bounding_box(input_array, detections, _boxes, _classes,
                            class_map, _masks)

    result_image = Image.fromarray(input_array)

    #print('rotated_image.shape = ',input_array.shape)

    #result_image.save('output.jpg',format='JPEG')

    #convert image back to string..
    buffered = BytesIO()
    result_image.save(buffered, format="JPEG")
    final_img_str = base64.b64encode(buffered.getvalue())

    #     print('Request-files:',request.files,file=sys.stderr)
    #     print('Requestfiletype:',type(request.files),file=sys.stderr)

    #     data = request.files.to_dict()

    #     print('data',data,file=sys.stderr)

    #     #to-do Input file validation... (ensure input file is valid jpg or png)
    #     file = data['upload']

    #     print('File name:',file.filename,file=sys.stderr)

    #     file_path = os.path.join("Images",file.filename)

    #     file.save(file_path)

    #     print('File saved with name:',file.filename,file=sys.stderr)

    #Deserialize the image..
    #     with open(image_name,'wb') as image_file:
    #         image_file.write(image)

    response = final_img_str

    # print("Returning Image Response...",file=sys.stderr)

    # tf.reset_defualt_graph();

    return response
ap.add_argument("-c",
                "--confidence",
                type=float,
                default=0.25,
                help="minimum probability to filter weak detections")
ap.add_argument("-t",
                "--threshold",
                type=float,
                default=0.25,
                help="threshold when applying non-maxima suppression")
args = vars(ap.parse_args())

size = 1.5
image_size = (1280, 720)

map_class = get_class_map()
class_map = {}
for key in map_class.keys():
    class_map[map_class[key]] = key

# Load models using opencv dnn module
yoloVehicle = YoloModel(args["vehicle_model"],
                        confidenceTresh=args['confidence'],
                        nmsTresh=args['threshold'])
yoloPlate = YoloModel(args["plate_model"],
                      confidenceTresh=args['confidence'],
                      nmsTresh=args['threshold'])
yoloChar = YoloModel(args["char_model"],
                     confidenceTresh=args['confidence'],
                     nmsTresh=args['threshold'])