def main(): config = get_config_from_json('config.json') # create an instance of the model model = DEC(config) # create trainer instance trainer = Trainer(config, model) # train the model trainer.train()
def main(): config = get_config_from_json('config.json') # create an instance of the model model = VAE(config) # create experiments instance experiments = Experiments(config, model) # create trainer instance trainer = Trainer(config, model, experiments) # train the model trainer.train()
utils.save_dict_to_json(params, json_path) # Launch training with this config cmd = "{python} train.py --model_dir {model_dir} --data_dir {data_dir}".format( python=PYTHON, model_dir=model_dir, data_dir=data_dir) print(cmd) subprocess.check_call(cmd, shell=True) if __name__ == "__main__": # Load the "reference" parameters from parent_dir json file args = parser.parse_args() json_path = os.path.join(args.parent_dir, 'params.json') assert os.path.isfile( json_path), "No json configuration file found at {}".format(json_path) params = utils.get_config_from_json(json_path) # Perform hypersearch over one parameter # image_size = [128, 224, 512, 1024] # batch_size = [64, 32, 16, 8] image_size = [1024] batch_size = [4] for sz, bz in zip(image_size, batch_size): # Modify the relevant parameter in params params.image_size = sz params.batch_size = bz # Launch job (name has to be unique) job_name = "image_size_{}_bz{}".format(sz, bz) launch_training_job(args.parent_dir, args.data_dir, job_name, params)