def run_test():
    zplus = kvector_t(0.0, 0.0, 1.0)
    zmin = kvector_t(0.0, 0.0, -1.0)

    # IntensityDataIOFactory.writeIntensityData(getSimulationIntensity(zplus, 1.0), 'polmagcylinders2_reference_00.int')
    # IntensityDataIOFactory.writeIntensityData(getSimulationIntensity(zplus, -1.0), 'polmagcylinders2_reference_01.int')
    # IntensityDataIOFactory.writeIntensityData(getSimulationIntensity(zmin, 1.0), 'polmagcylinders2_reference_10.int')
    # IntensityDataIOFactory.writeIntensityData(getSimulationIntensity(zmin, -1.0), 'polmagcylinders2_reference_11.int')
    diff = 0.0
    diff += get_difference(
        getSimulationIntensity(zplus, 1.0).array(),
        get_reference_data('polmagcylinders2_reference_00.int.gz').getArray())
    diff += get_difference(
        getSimulationIntensity(zplus, -1.0).array(),
        get_reference_data('polmagcylinders2_reference_01.int.gz').getArray())
    diff += get_difference(
        getSimulationIntensity(zmin, 1.0).array(),
        get_reference_data('polmagcylinders2_reference_10.int.gz').getArray())
    diff += get_difference(
        getSimulationIntensity(zmin, -1.0).array(),
        get_reference_data('polmagcylinders2_reference_11.int.gz').getArray())

    diff /= 4.0
    status = "OK"
    if diff > 2e-10:
        status = "FAILED"
    return "PolarizedDWBAZeroMag", "functional test: polarized DWBA with non-zero magnetic field", diff, status
def run_test():
    result = runSimulation()
    # ba.IntensityDataIOFactory.writeIntensityData(result, 'polmagcylinders1_reference.int')

    reference = utils.get_reference_data('polmagcylinders1_reference.int.gz')

    diff = utils.get_difference(result.array(), reference.getArray())

    status = "OK"
    if diff > 2e-10:
        status = "FAILED"
    return "PolarizedDWBAZeroMag", "Polarized DWBA with zero magnetic field", diff, status
Exemple #3
0
def _create_bins(num_of_bins: int, diff: pd.DataFrame) -> [float]:
    labels = diff.index.values.tolist()

    # get list of all differences
    all_diff = []
    # create buckets
    for i in range(len(labels)):
        for j in range(i):
            all_diff.append(utils.get_difference(labels[i], labels[j], diff))

    # create bins
    _, bins = pd.qcut(all_diff, num_of_bins, retbins=True)
    bins = list(bins)

    return bins
def get_feature_from_bin(label_of_feature: int, bins: bs.EquisizedBins,
                         diff: pd.DataFrame):
    feature = [0] * bins.get_number_of_bins()
    labels = utils.get_row_labels(diff)
    for other_label in labels:
        if other_label == label_of_feature:
            continue
        category = bins.get_category(
            utils.get_difference(label_of_feature, other_label, diff))
        feature[category] += 1

    # normalise
    feature = list(map(lambda x: float(x) / len(labels), feature))

    return feature