def write_bbox(self, traces, time_consume): # cnt = 0 # self.render_rect_cache[:] = [None] * self.cfg.cache_size for frame_idx, rects in traces.items(): # old_rects = self.render_rect_cache[frame_idx % self.cache_size] if frame_idx in self.render_rect_cache: old_rects = self.render_rect_cache[frame_idx] self.render_rect_cache[frame_idx] = old_rects + rects else: self.render_rect_cache[frame_idx] = rects json_msg = creat_detect_msg_json( video_stream=self.cfg.rtsp, channel=self.cfg.channel, timestamp=get_local_time(time_consume), rects=rects, dol_id=self.dol_id, camera_id=self.cfg.camera_id, cfg=self.cfg) self.msg_queue.put(json_msg) # bbox rendering is post to render logger.debug(f'put detect message in msg_queue {json_msg}...') # print(rects) empty_msg = creat_detect_empty_msg_json( video_stream=self.cfg.rtsp, channel=self.cfg.channel, timestamp=get_local_time(time_consume), dol_id=self.dol_id, camera_id=self.cfg.camera_id) self.dol_id += 1 self.msg_queue.put(empty_msg)
def event_page(short_code=None): event = None try: event_id = short_url.decode_url(short_code) event = CtfEvent.query.get(event_id) event.local_start_date = get_local_time(event.start_date, request.remote_addr) event.local_end_date = get_local_time(event.end_date, request.remote_addr) event.details = json.loads(event.details) except Exception as e: print e return render_template('event.html', event=event, short_code=short_code)
async def bot_schedule(self): await self.wait_until_ready() channel = self.get_channel(main_channel) while not self.is_closed(): # Update presence message activity = utils.jims_picker() await bot.change_presence(activity=discord.Game(activity)) # Grabs the current time (Brisbane timezone) check_time = utils.get_local_time().time() # Good morning message (9am) if time(9, 0) <= check_time <= time(9, 2): await channel.send("Good Morning!") await self.send_motd() # New xkcd comic (3pm) if time(15, 0) <= check_time <= time(15, 2): check_day = datetime.utcnow().weekday() if check_day == 0 or check_day == 2 or check_day == 4: await asyncio.sleep(60) xkcd_comic = utils.get_xkcd() await channel.send("New xkcd comic!") await channel.send(xkcd_comic) # Sleep until the next hour minutesToSleep = 60 - datetime.utcnow().minute % 60 await asyncio.sleep(minutesToSleep * 60)
def save_result(self, d): d['time'] = get_local_time() # save file result jpgdir = os.path.join(baseDir, RESULT_FILE) fobj = open(jpgdir, 'a+') fobj.write(json.dumps(d) + '\n') fobj.close()
def generate_weather_data(cities): full_weather_data = [] for city in cities: latitude, longitude = utils.get_lat_and_lon() altitude = utils.get_altitude() local_time = utils.get_local_time() temperature = utils.get_temperature() pressure = utils.get_pressure() weather_condition = utils.get_condition(temperature) humidity = utils.get_humidity() entry = utils.create_weather_entry(city, latitude, longitude, altitude, local_time, weather_condition, temperature, pressure, humidity) full_weather_data.append(entry) return full_weather_data
async def bot_schedule(self): await self.wait_until_ready() channel = self.get_channel(MAIN_CHANNEL) while not self.is_closed(): # Grabs the current time (Brisbane timezone) await self.update_activity() check_time = utils.get_local_time().time() # Good morning message (9am) if time(9, 0) <= check_time <= time(9, 2): await self.send_motd() # New xkcd comic (3pm) if time(15, 0) <= check_time <= time(15, 2): check_day = datetime.utcnow().weekday() if check_day == 0 or check_day == 2 or check_day == 4: await self.send_xkcd() # Sleep until the next hour minutesToSleep = 60 - datetime.utcnow().minute % 60 await asyncio.sleep(minutesToSleep * 60)
# ┌────────────────────────────────────────────────────────────────────┐ # │ Start training │ # └────────────────────────────────────────────────────────────────────┘ iterations = trainer.resume(checkpoint_directory, param=config) if opts.resume else 0 to_pil = transforms.ToPILImage() for epoch in range(config['n_epoch']): for it, (image_in, targets) in enumerate(train_loader): trainer.update_learning_rate() images_i, images_r, images_s, image_m = image_in.cuda().detach(), targets['albedo'].cuda().detach(), \ targets['shading'].cuda().detach(), targets['mask'].cuda().detach() with Timer("<{}> [Epoch: {}] Elapsed time in update: %f".format( get_local_time(), epoch)): # ┌────────────────────────────────────────────────────────┐ # │ Main training code │ # └────────────────────────────────────────────────────────┘ image_m = image_m > 0.1 trainer.dis_update(images_i, images_r, images_s, config) trainer.gen_update(images_i, images_r, images_s, targets, config) torch.cuda.synchronize() # ┌────────────────────────────────────────────────────────────┐ # │ Dump training stats in log file │ # └────────────────────────────────────────────────────────────┘ if (iterations + 1) % config['log_iter'] == 0: print("<{}> Iteration: %08d/%08d".format(get_local_time()) % (iterations + 1, max_iter)) write_loss(iterations, trainer, train_writer)
def __str__(self): return "{}{}{}{}{}".format(self.block_no, self.nonce, self.previous_hash, get_local_time(self.timestamp), self.hash)
def _updateTodo(todo, form): for k, v in form.items(): setattr(todo, k, v) todo.ut = get_local_time(time.time())
def time(): context = get_local_time(request) return render_template('base.html', context=context)
with torch.no_grad(): t_bar = tqdm(test_list) t_bar.set_description('Processing') with open(log_pwd, 'w') as fid_w: for image_info in t_bar: img_pwd = image_info image = Image.open(img_pwd).convert('RGB') # cv2.imshow('{}'.format(CLASS_ID), np.asarray(image)[:, :, ::-1]) # cv2.waitKey() label = int(os.path.dirname(img_pwd).split(os.sep)[-1].split('-')[0]) image = transform(image) image = image.unsqueeze(0).cuda() pred = trainer.net(image) ps = torch.exp(pred) top_p, top_class = ps.topk(1, dim=1) accuracy = int(top_class.item() == label) accuracy_list.append(float(accuracy)) if accuracy < 1: line_info = '{} | pred: {}, label: {}'.format(img_pwd, top_class.item(), label) print(line_info) fid_w.write(line_info + '\n') # cv2.imshow('error result', cv2.imread(img_pwd)) # cv2.waitKey(10) mean_acc = np.mean(accuracy_list) print('\n<{}> Test result: accuracy: {}'.format(get_local_time(), mean_acc)) fid_w.write('\n<{}> Test result: accuracy: {}\n'.format(get_local_time(), mean_acc))
# cv2.imshow('image out', np.asarray(img_out)[:, :, ::-1]) # cv2.waitKey() # # continue # trainer.dis_update(images_in, images_out, config) trainer.gen_update(images_in, images_out, config) # Dump training stats in log file # if (iterations + 1) % config['log_iter'] == 0: # print('<{}> [Epoch: {}] [Iter: {}/{}] | Loss: {}'.format(get_local_time(), epoch, it, len(train_loader), # to_number(trainer.loss_total))) if (iterations + 1) % config['log_iter'] == 0: print( '<{}> [Epoch: {}] [Iter: {}/{}] | [Loss] Pixel: {}, Pair: {}, GT: {}, Total: {}' .format(get_local_time(), epoch, it, len(train_loader), to_number(trainer.loss_pixel), to_number(trainer.loss_pair), to_number(trainer.loss_gt), to_number(trainer.loss_total))) write_loss(iterations, trainer, train_writer) # Write images # if (iterations + 1) % config['image_save_iter'] == 0: # with torch.no_grad(): # outputs = trainer.sample(images_in, images_out) # # write_2images(outputs, display_size, image_directory, 'train_%08d' % (iterations + 1)) # # HTML # write_html(output_directory + "/index.html", iterations + 1, config['image_save_iter'], 'images') iterations += 1
def __init__(self, form): self.id = self.getid() self.title = form.get("title", "") self.ct = get_local_time(time.time()) self.ut = self.ct
# for i in range(0, images.shape[0]): # img_i = images[i].cpu() # img_i = img_i * 0.225 + 0.45 # img_i = to_pil(img_i) # print(labels[i].item()) # cv2.imshow('image i', np.asarray(img_i)[:, :, ::-1]) # cv2.waitKey() # continue loss, acc = trainer.update(images, labels) log_counter += 1 if log_counter % config['log_iter'] == 0: print( "<%s> Epoch: %03d/%03d, Iteration: %03d/%03d, Loss: %.8f, Acc: %.3f" % (get_local_time(), epoch + 1, config['n_epochs'], it + 1, len(train_loader), loss, acc)) iterations = epoch * len(train_loader) + it + 1 write_loss(iterations, trainer, train_writer) if (epoch + 1) % config['test_iter'] == 0: t_bar = tqdm.tqdm(test_loader) t_bar.set_description('Epoch: {} - Testing'.format(epoch + 1)) losses = [] accuracy_list = [] for (images, labels) in t_bar: images = images.cuda() labels = labels.cuda() loss, accuracy = trainer.evaluate(images, labels) losses.append(loss) accuracy_list.append(accuracy)
t_bar = tqdm(eval_list) t_bar.set_description('Processing') with open(log_pwd, 'w') as fid_w: for image_info in t_bar: img_pwd, label = image_info.split(' ') image = Image.open(img_pwd).convert('RGB') label = int(label) image = transform(image) image = image.unsqueeze(0).cuda() pred = trainer.model(image) ps = torch.exp(pred) top_p, top_class = ps.topk(1, dim=1) accuracy = int(top_class.item() == label) accuracy_list.append(float(accuracy)) if accuracy < 1: line_info = '{} | pred: {}, label: {}'.format( img_pwd, int(top_class.item()), int(label)) # print(line_info) fid_w.write(line_info + '\n') # cv2.imshow('error result', cv2.imread(img_pwd)) # cv2.waitKey(10) mean_acc = np.mean(accuracy_list) print('\n<{}> Eval result: accuracy: {}'.format( get_local_time(), mean_acc)) fid_w.write('\n<{}> Eval result: accuracy: {}\n'.format( get_local_time(), mean_acc))