Exemple #1
0
def convert_sthv1_csv_to_json(class_file_path, train_csv_path, val_csv_path,
                            test_csv_path, video_dir_path, dst_json_path):
    labels = load_labels(class_file_path)
    train_database = convert_csv_to_dict(train_csv_path, 'training')
    val_database = convert_csv_to_dict(val_csv_path, 'validation')
    if test_csv_path.exists():
        test_database = convert_csv_to_dict(test_csv_path, 'testing')

    dst_data = {}
    dst_data['labels'] = labels
    dst_data['database'] = {}
    dst_data['database'].update(train_database)
    dst_data['database'].update(val_database)
    if test_csv_path.exists():
        dst_data['database'].update(test_database)

    count = 0
    for k, v in tqdm.tqdm(dst_data['database'].items()):
        if 'label' in v['annotations']:
            label = v['annotations']['label']
        else:
            label = 'test'

        video_path = video_dir_path / k
        n_frames = get_n_frames(video_path)
        v['annotations']['segment'] = (1, n_frames + 1)
        v['video_path'] = str(video_path)
#        count += 1
#        if count == 1000:
#            break

    with dst_json_path.open('w') as dst_file:
        json.dump(dst_data, dst_file)
Exemple #2
0
def convert_photosensitivity_csv_to_json(label_csv_path, train_csv_path, val_csv_path, video_dir_path, dst_json_path):
    labels = load_labels(label_csv_path)
    train_database = convert_csv_to_dict(train_csv_path, 'training')
    val_database = convert_csv_to_dict(val_csv_path, 'validation')

    dst_data = {}
    dst_data['labels'] = labels
    dst_data['database'] = {}
    dst_data['database'].update(train_database)
    dst_data['database'].update(val_database)

    for k, v in dst_data['database'].items():
        if v['annotations'] is not None:
            label = v['annotations']['label']
        else:
            label = 'test'

        video_path = video_dir_path / label / k
        # print(video_path)
        n_frames = get_n_frames(video_path)
        # print(n_frames)
        v['annotations']['segment'] = (1, n_frames + 1)

    with dst_json_path.open('w') as dst_file:
        json.dump(dst_data, dst_file)
def convert_kinetics_csv_to_json(train_csv_path, val_csv_path, test_csv_path,
                                 video_dir_path, video_type, dst_json_path):
    labels = load_labels(train_csv_path)
    train_database = convert_csv_to_dict(train_csv_path, 'training')
    val_database = convert_csv_to_dict(val_csv_path, 'validation')
    if test_csv_path.exists():
        test_database = convert_csv_to_dict(test_csv_path, 'testing')

    dst_data = {}
    dst_data['labels'] = labels
    dst_data['database'] = {}
    dst_data['database'].update(train_database)
    dst_data['database'].update(val_database)
    if test_csv_path.exists():
        dst_data['database'].update(test_database)

    for k, v in dst_data['database'].items():
        if 'label' in v['annotations']:
            label = v['annotations']['label']
        else:
            label = 'test'

        if video_type == 'jpg':
            video_path = video_dir_path / label / k
            if video_path.exists():
                n_frames = get_n_frames(video_path)
                v['annotations']['segment'] = (1, n_frames + 1)
        else:
            video_path = video_dir_path / label / f'{k}.hdf5'
            if video_path.exists():
                n_frames = get_n_frames_hdf5(video_path)
                v['annotations']['segment'] = (0, n_frames)

    with dst_json_path.open('w') as dst_file:
        json.dump(dst_data, dst_file)
Exemple #4
0
def convert_ucf101_csv_to_json(label_csv_path, train_csv_path, val_csv_path,
                               video_dir_path, audio_dir_path, dst_json_path,
                               video_type):
    if audio_dir_path is not None:
        labels = [x.name for x in sorted(audio_dir_path.iterdir())]
    else:
        labels = load_labels(label_csv_path)
    train_database = convert_csv_to_dict(train_csv_path, 'training', labels)
    val_database = convert_csv_to_dict(val_csv_path, 'validation', labels)

    dst_data = {}
    dst_data['labels'] = labels
    dst_data['database'] = {}
    dst_data['database'].update(train_database)
    dst_data['database'].update(val_database)

    for k, v in dst_data['database'].items():
        if v['annotations'] is not None:
            label = v['annotations']['label']
        else:
            label = 'test'

        video_path = video_dir_path / label / k

        if video_type == 'jpg':
            n_frames = get_n_frames(video_path)
        else:
            video_path = str(video_path) + '.hdf5'
            n_frames = get_n_frames_hdf5(video_path)

        v['annotations']['segment'] = (1, n_frames + 1)

    if audio_dir_path is not None:  # save the subset
        dst_json_path = dst_json_path.parent / dst_json_path.name.replace(
            'ucf101', 'ucf51')
    with dst_json_path.open('w') as dst_file:
        json.dump(dst_data, dst_file)