def SAE_evidence(sae_dict, cp2, ae_ids): # Init variables and parameters init = tf.global_variables_initializer() saver = tf.train.Saver() # Initialize model save string saemodelstr = saefinestr.split('.meta')[0] # Load evidence K = utils.load_evidence(cp2.get('Experiment', 'EVIDENCEDATAPATH')) _full = np.concatenate((K.train.one, K.test.one)) p = utils.get_perm(perm_str, _full) EV = _full[p] batch_size = cp2.getint('Hyperparameters', 'BatchSize') # Start Session (Layerwise training) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: # Initialize graph variables init.run() ev_dict = { 'cp2': cp2, 'sess': sess, 'saver': saver, 'EV': EV, 'savestr': saemodelstr, 'ae_ids': ae_ids, 'argv2': sys.argv[2] } EviAE.train(ev_dict, sae_dict) # Save hidden/output layer results for pipeline training utils.save_OOM(sess, sae_dict['sda_in'], EV, sae_dict['sda_hidden'], path=cp2.get('Experiment', 'PX_Z_TRAIN'), batch_size=batch_size) utils.save_OOM(sess, sae_dict['sda_in'], EV, sae_dict['sda_out'], path=cp2.get('Experiment', 'PX_XREC'), batch_size=batch_size) sess.close()
evitramfinestr = cp.get('Experiment', 'ModelOutputPath') + \ cp.get('Experiment', 'PREFIX') + '_' + \ cp.get('Experiment', 'Enumber') + '_' + \ sys.argv[2] + '_cond_model.ckpt.meta' # Full dataset random permutation path perm_str = out_ + cp.get('Experiment', 'PREFIX') + '_perm.npy' # Initialize Dataset XX = dataset.train.images XX_test = dataset.test.images XX_full = np.concatenate((dataset.train.images, dataset.test.images)) utils.log(str(XX_full.shape)) p = utils.get_perm(perm_str, XX_full) XX_full = XX_full[p] # Init ground truth YY = dataset.train.labels.flatten() YY_test = dataset.test.labels.flatten() YY_full = np.concatenate( (dataset.train.labels.flatten(), dataset.test.labels.flatten())) YY_full = YY_full[p] # Get batch size in case of batch save batch_size = cp.getint('Hyperparameters', 'BatchSize')