Exemple #1
0
def rama_pmf(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type, A.v)
    if not pt_dd:
        # if there is no rama_pmf, search for rama instead, this is trying to
        # reduce duplication in .xitconfig.yaml
        pt_dd = U.get_pt_dd(C, A.property, 'rama', A.v)

    logger.info(pt_dd)

    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)
    fig, axes = plt.subplots(nrows=nrow,
                             ncols=ncol,
                             figsize=(ncol * 7, nrow * 6))

    # to make the data type consistent for following analysis.
    # by the way, this is a very wiredly behaved api --2013-08-07
    # http://matplotlib.org/api/pyplot_api.html?highlight=subplots#matplotlib.pyplot.subplots
    if isinstance(axes, np.ndarray):
        axes = axes.flat
    elif isinstance(axes, Subplot):
        axes = [axes]

    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    if 'bins' in pt_dd:
        bins = np.arange(*pt_dd.get('bins'))
    else:
        bins = np.arange(-180, 171, 4)
    logger.info('bins:\n {0}'.format(bins))

    normed = pt_dd.get('normed', False)

    gk_xypmfs = []
    min_, max_ = get_min_max(data, bins, normed, gk_xypmfs)
    logger.info("min: {0}; max: {1}".format(min_, max_))

    for c, (gk, phi_edges, psi_edges, h_pmf) in enumerate(gk_xypmfs):
        ax = axes[c]

        cmap = getattr(cm, pt_dd.get('cmap', 'jet'))
        cmap.set_over('white')

        params = get_params(gk, pt_dd)
        logger.info('params: {0}'.format(params))

        F = U.timeit(ax.contourf)
        contour = F(phi_edges, psi_edges, h_pmf, **params)

        decorate_ax(ax, pt_dd, ncol, nrow, c, gk, A)

    cax = fig.add_axes([0.92, 0.2, 0.02, 0.6])  # left, bottom, width, hight
    cbar = plt.colorbar(contour, cax=cax)
    if 'cbar_ylabel' in pt_dd:
        cbar.ax.set_ylabel(**pt_dd['cbar_ylabel'])

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #2
0
def rama_pmf(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type, A.v)
    if not pt_dd:
        # if there is no rama_pmf, search for rama instead, this is trying to
        # reduce duplication in .xitconfig.yaml
        pt_dd = U.get_pt_dd(C, A.property, 'rama', A.v)

    logger.info(pt_dd)

    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)
    fig, axes = plt.subplots(nrows=nrow, ncols=ncol, figsize=(ncol*7, nrow*6))

    # to make the data type consistent for following analysis.
    # by the way, this is a very wiredly behaved api --2013-08-07
    # http://matplotlib.org/api/pyplot_api.html?highlight=subplots#matplotlib.pyplot.subplots
    if isinstance(axes, np.ndarray):
        axes = axes.flat
    elif isinstance(axes, Subplot):
        axes = [axes]

    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    if 'bins' in pt_dd:
        bins = np.arange(*pt_dd.get('bins'))
    else:
        bins = np.arange(-180, 171, 4)
    logger.info('bins:\n {0}'.format(bins))

    normed = pt_dd.get('normed', False)

    gk_xypmfs = []
    min_, max_ = get_min_max(data, bins, normed, gk_xypmfs)
    logger.info("min: {0}; max: {1}".format(min_, max_))

    for c, (gk, phi_edges, psi_edges, h_pmf) in enumerate(gk_xypmfs):
        ax = axes[c]

        cmap = getattr(cm, pt_dd.get('cmap', 'jet'))
        cmap.set_over('white')
    
        params = get_params(gk, pt_dd)
        logger.info('params: {0}'.format(params))

        F = U.timeit(ax.contourf)
        contour = F(phi_edges, psi_edges, h_pmf, **params)

        decorate_ax(ax, pt_dd, ncol, nrow, c, gk, A)

    cax = fig.add_axes([0.92, 0.2, 0.02, 0.6]) # left, bottom, width, hight
    cbar = plt.colorbar(contour, cax=cax)
    if 'cbar_ylabel' in pt_dd:
        cbar.ax.set_ylabel(**pt_dd['cbar_ylabel'])

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #3
0
def mp_alx(data, A, C, **kw):
    """alx for multiple properties (mp)"""
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    dsets = grp_datasets(data, pt_dd)

    fig = plt.figure(figsize=(12, 9))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)
    logger.info('Chosen # of cols: {0}, # of rows; {1}'.format(ncol, nrow))
    for c, sys_key in enumerate(dsets.keys()):
        ax = fig.add_subplot(nrow, ncol, c + 1)
        for prop_key in dsets[sys_key]:
            da = dsets[sys_key][prop_key]

            params = get_params(sys_key, prop_key, pt_dd, c)
            ax.plot(da[0], da[1], **params)
            ax.fill_between(da[0],
                            da[1] - da[2],
                            da[1] + da[2],
                            where=None,
                            facecolor=params.get('color'),
                            alpha=.3)

        if 'texts' in pt_dd:
            ax.text(**U.get_param(pt_dd['texts'], sys_key))

        decorate_ax(ax, pt_dd, ncol, nrow, c)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #4
0
def mp_alx(data, A, C, **kw):
    """alx for multiple properties (mp)"""
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    dsets = grp_datasets(data, pt_dd)

    fig = plt.figure(figsize=(12,9))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)
    logger.info('Chosen # of cols: {0}, # of rows; {1}'.format(ncol, nrow))
    for c, sys_key in enumerate(dsets.keys()):
        ax = fig.add_subplot(nrow, ncol, c+1)
        for prop_key in dsets[sys_key]:
            da = dsets[sys_key][prop_key]

            params = get_params(sys_key, prop_key, pt_dd, c)
            ax.plot(da[0], da[1], **params)
            ax.fill_between(da[0], da[1]-da[2], da[1]+da[2], 
                            where=None, facecolor=params.get('color'), alpha=.3)

        if 'texts' in pt_dd:
            ax.text(**U.get_param(pt_dd['texts'], sys_key))

        decorate_ax(ax, pt_dd, ncol, nrow, c)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #5
0
def calc_distr(h5, gk, grp, prop_obj, prop_dd, A, C):
    grp_tb = fetch_grp_tb(h5, grp, prop_obj.name)
    min_len = min(tb.read(field='time').shape[0] for tb in grp_tb)
    _l = []
    for tb in grp_tb:
        _l.append(tb.read(field=prop_obj.ifield)[:min_len])
    _la = np.array(_l)

    # grped_distr_ave is a variant of grped_distr
    special_cases = {'grped_distr_ave': 'grped_distr'}
    pt_dd = U.get_pt_dd(
        C, A.property, 
        special_cases.get(A.plot_type, A.plot_type))

    if 'bins' in pt_dd:
        i, j, s = [float(_) for _ in pt_dd['bins']]
        bins = np.arange(i, j, s)
    else:
        # assume usually 36 bins would be enough
        bins = np.linspace(_la.min(), _la.max(), 36)

    ps = []                             # probability distributions for each tb
    for _ in _la:
        fnormed = pt_dd.get('normed', False)
        p, __ = np.histogram(_, bins, normed=fnormed) 
        if not fnormed:
            p = p / float(sum(p)) # unnormed probability
        ps.append(p)
    ps = np.array(ps)

    bn = (bins[:-1] + bins[1:]) / 2.             # to gain the same length as psm, pse
    psm = ps.mean(axis=0)
    pse = [U.sem(ps[:,i]) for i in xrange(len(ps[0]))]
    pse = np.array(pse)
    return np.array([bn, psm, pse])
Exemple #6
0
def grped_omega_distr(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)

    dsets = grp_datasets(data, pt_dd)
    if 'bins' in pt_dd:
        i, j, s = [float(_) for _ in pt_dd['bins']]
    else:
        i, j, s = [-0.1, 1.1, 0.1]

    bins = np.arange(i, j, s)

    fig = plt.figure(figsize=pt_dd.get('figsize', (12,9)))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])
    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)
    logger.info('Chosen # of cols: {0}, # of rows; {1}'.format(ncol, nrow))
    for c, dsetk in enumerate(dsets):
        dset = dsets[dsetk]
        ax = fig.add_subplot(nrow, ncol, c+1)
        if 'text' in dset:
            ax.text(s=dset['text'], **pt_dd['text'])
        for gk in dsets[dsetk]['data']:
            da = dsets[dsetk]['data'][gk]
            params = get_params(gk, pt_dd)
            ax.hist(da, bins=bins, normed=False, alpha=0.3, **params)

        decorate_ax(ax, pt_dd, ncol, nrow, c)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #7
0
def imap(data, A, C, **kw):
    """imap: interaction map"""
    logger.info('start plotting interaction map...')
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)

    fig = plt.figure(figsize=(12,9))
    col, row = U.gen_rc(len(data.keys()), pt_dd)
    grid = ImageGrid(fig, 111, nrows_ncols = (row, col), 
                     axes_pad = 0.3, 
                     add_all=True, label_mode = "L")

    if 'denorminators' in pt_dd:
        for gk in data:
            dn = U.get_param(pt_dd['denorminators'], gk)
            logger.info('denorminator: {0}'.format(dn))
            data[gk] = data[gk] / dn

    # used to set up the reference point and the range of color bar
    max_ = get_max(data)
    for k, gk in enumerate(data.keys()):
        ax = grid[k]

        da = data[gk]
        rda = da
        logger.info('map max: {0}; map min: {1}'.format(rda.max(), rda.min()))

        # JUST FOR REFERENCE OF SEEING WHERE THE END POINTS ARE, DEBUGGING USES
        # rda[-1][-1] = max_
        # rda[0][-1] = max_

        # sophisticated reversal to make x axis donor, y axis acceptor
        # rda = np.array([i[::-1] for i in da.transpose()[::-1]])

        # sophisticated reversal to make x axis acceptor, y axis donor
        # rda = np.array([i[::-1] for i in da[::-1]])

        params = get_params(gk, pt_dd)
        logger.info(params)
        # cmap_options: hot, gist_heat, Orange (printer friendly)

        # remove the info about the Hbonding information about first residue,
        # which ACE, this make the final map easier to understand
        rda = np.delete(np.delete(rda, 0, 0), 0, 1)

        im = ax.pcolormesh(rda, **params)

        if 'clim' in pt_dd:
            im.set_clim(**pt_dd['clim'])
        else:
            im.set_clim(0, max_)

        logger.info('shape after removal of the 0th residue: {0}'.format(rda.shape))
        ax.set_xlim([0, rda.shape[0]])
        ax.set_ylim([0, rda.shape[1]])

        ax.minorticks_on()
        decorate_ax(ax, pt_dd, gk)

    plt.colorbar(im, shrink=.5, orientation='vertical', anchor=(1.3, 0))
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #8
0
def grped_bars(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    grp_REs = pt_dd['grp_REs']
    dsets = grp_datasets(data, grp_REs)

    bar_width = pt_dd.get('bar_width', 1)
    nbars_per_cluster = len(dsets.keys())
    nclusters = len(data) / nbars_per_cluster
    logger.info('number of clusters: {0}; # bars per cluster: {1}'.format(
        nclusters, nbars_per_cluster))
    cluster_width = bar_width * nbars_per_cluster

    # space between neigbouring groups of bars
    spacing = pt_dd.get('spacing', 0.35)

    xlocs = np.arange(0, nclusters * (cluster_width + spacing),
                      cluster_width + spacing)
    logger.info('xlocs: {0}'.format(xlocs))

    fig = plt.figure()
    ax = fig.add_subplot(111)

    rectss = []  # plural of rects
    for c, dsetk in enumerate(dsets.keys()):
        dset = dsets[dsetk]
        for cc, kk in enumerate(dset.keys()):
            mean = dset[kk][0]
            std = dset[kk][1]
            params = get_params(kk, pt_dd)
            if cc != len(dset.keys()) - 1 and 'label' in params.keys():
                # since you just need one legend for all set of bars
                params.pop('label')

            xloc = xlocs[cc] + c * bar_width
            rects = ax.bar(xloc, mean, bar_width, yerr=std, **params)
            rectss.append(rects)

    ax.set_xticks(xlocs + cluster_width / 2.)

    def autolabel(rects):
        # attach some text labels
        for rect in rects:
            height = rect.get_height()
            ax.text(rect.get_x() + rect.get_width() / 2.,
                    1.05 * height,
                    '%.2f' % float(height),
                    ha='center',
                    va='bottom')

    f_autolabel = pt_dd.get('f_autolabel', True)
    if f_autolabel:
        for rects in rectss:
            autolabel(rects)

    decorate_ax(ax, pt_dd)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))

    dsets = OrderedDict(
    )  # dsets: meaning further grouping, based on which ploting
Exemple #9
0
def grped_bars(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    grp_REs = pt_dd['grp_REs']
    dsets = grp_datasets(data, grp_REs)

    bar_width = pt_dd.get('bar_width', 1)
    nbars_per_cluster = len(dsets.keys())
    nclusters = len(data) / nbars_per_cluster
    logger.info('number of clusters: {0}; # bars per cluster: {1}'.format(nclusters, nbars_per_cluster))
    cluster_width = bar_width * nbars_per_cluster

    # space between neigbouring groups of bars
    spacing = pt_dd.get('spacing', 0.35)

    xlocs = np.arange(0, nclusters * (cluster_width + spacing), cluster_width + spacing)
    logger.info('xlocs: {0}'.format(xlocs))

    fig = plt.figure()
    ax = fig.add_subplot(111)
    
    rectss = []                                             # plural of rects
    for c, dsetk in enumerate(dsets.keys()):
        dset = dsets[dsetk]
        for cc, kk in enumerate(dset.keys()):
            mean = dset[kk][0]
            std  = dset[kk][1]
            params = get_params(kk, pt_dd)
            if cc != len(dset.keys()) - 1 and 'label' in params.keys():
                # since you just need one legend for all set of bars
                params.pop('label')
            
            xloc = xlocs[cc] + c * bar_width
            rects = ax.bar(xloc, mean, bar_width, yerr=std, **params)
            rectss.append(rects)

    ax.set_xticks(xlocs + cluster_width / 2.)

    def autolabel(rects):
        # attach some text labels
        for rect in rects:
            height = rect.get_height()
            ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%.2f'%float(height),
                    ha='center', va='bottom')

    f_autolabel = pt_dd.get('f_autolabel', True)
    if f_autolabel:
        for rects in rectss:
            autolabel(rects)

    decorate_ax(ax, pt_dd)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))

    dsets = OrderedDict() # dsets: meaning further grouping, based on which ploting
Exemple #10
0
def calc_pmf(h5, gk, grp, prop_obj, prop_dd, A, C):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    if 'bins' not in pt_dd:
        raise ValueError('bins not found in {0}, but be specified when plotting pmf'.format(A.config))
    subgrps = U.split(grp, 10)                       # 10 is the group_size
    da = []
    for sp in subgrps:
        bn, psm, pse = calc_distr(h5, '', sp, prop_obj, prop_dd, A, C)
        pmf, pmf_e = U.prob2pmf(psm, max(psm), pse)
        for b, i in zip(bn, pmf):
            print b, i
        sub_da = np.array([bn, pmf, pmf_e])
        da.append(sub_da)
    return np.array(da)
Exemple #11
0
def distr(data, A, C, **kw):
    """data: is an OrderedDict"""
    logger.info('start plotting distr...')

    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    fig = plt.figure(figsize=pt_dd.get('figsize', (12,9)))
    if A.merge:
        ax = fig.add_subplot(111)
        for c, gk in enumerate(data.keys()):
            da = data[gk]
            params = get_params(gk, pt_dd)
            line = ax.plot(da[0], da[1], **params)
            # facecolor uses the same color as ax.plot
            ax.fill_between(da[0], da[1]-da[2], da[1]+da[2], 
                            where=None, facecolor=line[0].get_color(), alpha=.3)
        decorate_ax(ax, pt_dd)
    else:
        col, row = U.gen_rc(len(data.keys()), pt_dd)
        for c, gk in enumerate(data.keys()):
            ax = fig.add_subplot(row, col, c+1)
            da = data[gk]
            params = get_params(gk, pt_dd)
            # ax.errorbar(da[0], da[1], yerr=da[2], **params)
            xs, ys, es = da[0], da[1], da[2] # es: errors

            line = ax.plot(xs, ys, **params)
            ax.fill_between(xs, ys-es, ys+es, 
                            where=None, facecolor=line[0].get_color(), alpha=.3)

            # do a gaussian fit
            if pt_dd.get('gaussian_fit'):
                # maybe it's better to use p0 for curve_fit
                popt, pcov = curve_fit(gaussian, xs, ys)
                _, mu, sigma = popt
                logger.info('mean of the fitted normal distribution: {0}'.format(mu))
                new_ys = gaussian(xs, *popt)
                # pearsonr creates different value from that by calc_r2
                # corr, p_val = pearsonr(ys, new_ys)
                r2 = U.calc_r2(ys, new_ys)
                ax.plot(xs, new_ys, linewidth="2", 
                        color='black', 
                        label='r$^2$ = {0:.3f}'.format(r2))
                
            decorate_ax(ax, pt_dd)

    output = U.gen_output_filename(A, C)
    logger.info('saving to {0}'.format(output))
    plt.savefig(output)
Exemple #12
0
def grped_along_var_2prop(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    dsets = group_datasets(data, pt_dd['grp_REs'])

    fig = plt.figure()
    for c, propi in enumerate(dsets.keys()):
        i = c+1                 # i tracks whether it's prop1 or prop2
        subdsets = dsets[propi]
        if c == 0:
            ax1 = fig.add_subplot(111)            
            ax_plot(ax1, subdsets, pt_dd, A, i)
            decorate_ax(ax1, pt_dd, i)
        else:
            ax2 = ax1.twinx()
            ax_plot(ax2, subdsets, pt_dd, A, i)
            decorate_ax(ax2, pt_dd, i)
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #13
0
def rama(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type, A.v)
    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)

    # ncol * 8 instead of 6 is because color bar will squeeze the subplot
    # otherwise.
    fig = plt.figure(figsize=(ncol * 8, nrow * 6))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    bins = pt_dd.get('bins', 36)
    normed = pt_dd.get('normed', False)
    contours = []
    max_ = 0
    for c, gk in enumerate(data.keys()):
        ax = fig.add_subplot(nrow, ncol, c + 1)
        da = data[gk]

        phis, psis = da
        h, phip, psip = np.histogram2d(psis,
                                       phis,
                                       range=[[-180, 180], [-180, 180]],
                                       bins=bins,
                                       normed=normed)
        phip = (phip[1:] + phip[:-1]) / 2.
        psip = (psip[1:] + psip[:-1]) / 2.

        cmap = getattr(cm, pt_dd.get('cmap', 'gray_r'))
        contour = ax.contourf(phip, psip, h, cmap=cmap)
        fig.colorbar(contour, shrink=0.6, extend='both')

        contours.append(contour)

        decorate_ax(ax, pt_dd, ncol, nrow, c, gk, A)

        _ = max(phip.max(), psip.max())
        if _ > max_:
            max_ = _

    for _ in contours:
        _.set_clim(0, max_)

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #14
0
def bars(grps, A, C, **kw):
    dd = utils.get_pt_dd(C, A.property, A.plot_type)
    logger.debug('\n{0}'.format(pformat((dict(grps)))))
    bar_width = 1.
    type_of_bars = 1  # i.e. w, m
    space = 0.35  # space between neigbouring groups of bars

    # x coordinates for bars
    min_, max_ = 0, len(grps.items()) * (bar_width * type_of_bars + space)
    step = bar_width * type_of_bars + space
    xlocs = np.arange(min_, max_, step)[:len(grps.items())]

    fig = plt.figure()
    ax = fig.add_subplot(111)
    means = [i[0] for i in grps.values()]
    stds = [i[1] for i in grps.values()]

    ax.bar(xlocs, means, bar_width, yerr=stds, color='white', hatch="\\")

    # decorate a bit
    ax.set_xlim(
        (0 - 2 * space),
        (len(grps.items()) * (bar_width * type_of_bars + space) + space))
    ax.set_xticks(xlocs + bar_width / 2.)  # /2. to make it in the middle
    ax.set_xticks(xlocs + bar_width / 2.)  # /2. to make it in the middle
    ax.grid(which="major", axis='y')

    if 'grid' in dd: ax.grid(**dd['grid'])
    if 'xlim' in dd: ax.set_xlim(**dd['xlim'])
    if 'ylim' in dd: ax.set_ylim(**dd['ylim'])
    if 'xlabel' in dd: ax.set_xlabel(**dd['xlabel'])
    if 'ylabel' in dd: ax.set_ylabel(**dd['ylabel'])
    if 'title' in dd: ax.set_title(**dd['title'])
    if 'legend' in dd: ax.legend(**dd['legend'])

    if 'xticklabels' in dd:
        ax.set_xticklabels(**dd['xticklabels'])
    else:
        ax.set_xticklabels(grps.keys(), rotation=20)

    plt.tight_layout()  # sometime text could be hidden due to not
    # enough padding, then use this.
    plt.savefig(utils.gen_output_filename(A, C))
Exemple #15
0
def bars(grps, A, C, **kw):
    dd = utils.get_pt_dd(C, A.property, A.plot_type)
    logger.debug('\n{0}'.format(pformat((dict(grps)))))
    bar_width = 1.
    type_of_bars = 1                 # i.e. w, m
    space = 0.35                     # space between neigbouring groups of bars

    # x coordinates for bars
    min_, max_ = 0, len(grps.items()) * (bar_width * type_of_bars + space)
    step  = bar_width * type_of_bars + space
    xlocs = np.arange(min_, max_, step)[:len(grps.items())]

    fig = plt.figure()
    ax = fig.add_subplot(111)
    means = [i[0] for i in grps.values()]
    stds  = [i[1] for i in grps.values()]

    ax.bar(xlocs, means, bar_width, yerr=stds,
           color='white', hatch="\\")

    # decorate a bit
    ax.set_xlim((0 - 2 *space), (len(grps.items()) * (bar_width * type_of_bars + space) + space))
    ax.set_xticks(xlocs + bar_width/2.)                     # /2. to make it in the middle
    ax.set_xticks(xlocs + bar_width/2.)                     # /2. to make it in the middle
    ax.grid(which="major", axis='y')

    if 'grid' in dd:   ax.grid(**dd['grid'])
    if 'xlim' in dd:   ax.set_xlim(**dd['xlim'])
    if 'ylim' in dd:   ax.set_ylim(**dd['ylim'])
    if 'xlabel' in dd: ax.set_xlabel(**dd['xlabel'])
    if 'ylabel' in dd: ax.set_ylabel(**dd['ylabel'])
    if 'title' in dd:  ax.set_title(**dd['title'])
    if 'legend' in dd: ax.legend(**dd['legend'])

    if 'xticklabels' in dd:
        ax.set_xticklabels(**dd['xticklabels'])
    else:
        ax.set_xticklabels(grps.keys(), rotation=20)

    plt.tight_layout()          # sometime text could be hidden due to not
                                # enough padding, then use this.
    plt.savefig(utils.gen_output_filename(A, C))
Exemple #16
0
def pot_ener_map(data, A, C, **kw):
    for k in data.keys():
        data[k] = pickle.loads(data[k])

    adjust_minima(data)
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    logger.info(pt_dd)

    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)
    fig, axes = plt.subplots(nrows=nrow,
                             ncols=ncol,
                             figsize=(ncol * 7, nrow * 6))
    axes = axes.flat

    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    for c, gk in enumerate(data.keys()):
        ax = axes[c]
        [phis, psis], da = data[gk]

        # this is just for determining the proper levels
        logger.info('min, max of the original map: {0}, {1}'.format(
            da.min(), da.max()))

        # further process da, mainly about removing peaks
        if 'levels' in pt_dd:
            min_, max_, step = U.get_param(pt_dd['levels'], gk)
            logger.info('min, max, step from pt_dd: {0}, {1}, {2}'.format(
                min_, max_, step))

        params = get_params(gk, pt_dd)
        contour = ax.contourf(phis, psis, da, **params)

        decorate_ax(ax, gk, pt_dd, ncol, nrow, c)

    cax = fig.add_axes([0.92, 0.2, 0.02, 0.6])  # left, bottom, width, hight
    cbar = plt.colorbar(contour, cax=cax)
    if 'cbar_ylabel' in pt_dd:
        cbar.ax.set_ylabel(**pt_dd['cbar_ylabel'])
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #17
0
def rama(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type, A.v)
    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)

    # ncol * 8 instead of 6 is because color bar will squeeze the subplot
    # otherwise.
    fig = plt.figure(figsize=(ncol*8, nrow*6))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    bins = pt_dd.get('bins', 36)
    normed = pt_dd.get('normed', False)
    contours = []
    max_ = 0
    for c, gk in enumerate(data.keys()):
        ax = fig.add_subplot(nrow, ncol, c+1)
        da = data[gk]

        phis, psis = da
        h, phip, psip = np.histogram2d(psis, phis, range=[[-180,180], [-180,180]], 
                                       bins=bins, normed=normed)
        phip = (phip[1:] + phip[:-1]) / 2.
        psip = (psip[1:] + psip[:-1]) / 2.

        cmap = getattr(cm, pt_dd.get('cmap', 'gray_r'))
        contour = ax.contourf(phip, psip, h, cmap=cmap)
        fig.colorbar(contour, shrink=0.6, extend='both')

        contours.append(contour)
    
        decorate_ax(ax, pt_dd, ncol, nrow, c, gk, A)

        _ = max(phip.max(), psip.max())
        if _ > max_:
            max_ = _

    for _ in contours:
        _.set_clim(0, max_)

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #18
0
def mp_grped_along_var(data, A, C, **kw):
    """along a variable, like var2 e.g. solvent"""
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type, A.vv)

    fig = plt.figure(figsize=(12,9))
    if 'subplots_adjust' in pt_dd: fig.subplots_adjust(**pt_dd['subplots_adjust'])

    ncol, nrow = U.gen_rc(len(A.properties), pt_dd)
    for c, pt in enumerate(A.properties):
        dsets = grped_along_var.group_datasets(data[pt], pt_dd['grp_REs'])

        ax = fig.add_subplot(nrow, ncol, c+1)
        grped_along_var.ax_plot(ax, dsets, pt_dd, A)
        decorate_ax(ax, pt_dd, pt, ncol, nrow, c)

    if 'figlegend' in pt_dd:
        leg = fig.legend(handles=ax.lines, **pt_dd['figlegend'])
        if 'legend_linewidth' in pt_dd:
            for _ in leg.legendHandles:
                _.set_linewidth(pt_dd['legend_linewidth'])

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #19
0
def pot_ener_map(data, A, C, **kw):
    for k in data.keys():
        data[k] = pickle.loads(data[k])

    adjust_minima(data)
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    logger.info(pt_dd)
    
    ncol, nrow = U.gen_rc(len(data.keys()), pt_dd)
    fig, axes = plt.subplots(nrows=nrow, ncols=ncol, figsize=(ncol*7, nrow*6))
    axes = axes.flat

    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    for c, gk in enumerate(data.keys()):
        ax = axes[c]
        [phis, psis], da = data[gk]

        # this is just for determining the proper levels
        logger.info('min, max of the original map: {0}, {1}'.format(da.min(), da.max()))

        # further process da, mainly about removing peaks
        if 'levels' in pt_dd:
            min_, max_, step = U.get_param(pt_dd['levels'], gk)
            logger.info(
                'min, max, step from pt_dd: {0}, {1}, {2}'.format(
                    min_, max_, step))

        params = get_params(gk, pt_dd)
        contour = ax.contourf(phis, psis, da, **params)

        decorate_ax(ax, gk, pt_dd, ncol, nrow, c)

    cax = fig.add_axes([0.92, 0.2, 0.02, 0.6]) # left, bottom, width, hight
    cbar = plt.colorbar(contour, cax=cax)
    if 'cbar_ylabel' in pt_dd:
        cbar.ax.set_ylabel(**pt_dd['cbar_ylabel'])
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #20
0
Fichier : xy.py Projet : zyxue/xit
def xy(data, A, C, **kw):
    """
    data structure of data, an OrderedDict
    data = {
        'x': {
            'groupkey0': [mean0,  std0],
            'groupkey1': [mean1,  std1],
            ...
            },
        'y': {
            'groupkey0': [mean0,  std0],
            'groupkey1': [mean1,  std1],
            ...
            }
        }
    """

    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    xp, yp = A.properties  # e.g. upup, unun
    xdata, ydata = data[xp], data[yp]

    # x, y means and errors
    xms, xes, yms, yes = [], [], [], []
    for c, key in enumerate(xdata.keys()):
        # xdata and ydata must have the same keys()
        xms.append(xdata[key][0])
        xes.append(xdata[key][1])
        yms.append(ydata[key][0])
        yes.append(ydata[key][1])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    for xm, xe, ym, ye in zip(xms, xes, yms, yes):
        ax.errorbar(xm, ym, xerr=xe, yerr=ye)

    decorate_ax(ax, pt_dd)
    plt.savefig(U.gen_output_filename(A, C))
Exemple #21
0
Fichier : xy.py Projet : zyxue/xit
def xy(data, A, C, **kw):
    """
    data structure of data, an OrderedDict
    data = {
        'x': {
            'groupkey0': [mean0,  std0],
            'groupkey1': [mean1,  std1],
            ...
            },
        'y': {
            'groupkey0': [mean0,  std0],
            'groupkey1': [mean1,  std1],
            ...
            }
        }
    """

    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    xp, yp = A.properties                                   # e.g. upup, unun
    xdata, ydata = data[xp], data[yp]

    # x, y means and errors
    xms, xes, yms, yes = [], [], [], []
    for c, key in enumerate(xdata.keys()):
        # xdata and ydata must have the same keys()
        xms.append(xdata[key][0])
        xes.append(xdata[key][1])
        yms.append(ydata[key][0])
        yes.append(ydata[key][1])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    for xm, xe, ym, ye in zip(xms, xes, yms, yes):
        ax.errorbar(xm, ym, xerr=xe, yerr=ye)

    decorate_ax(ax, pt_dd)
    plt.savefig(U.gen_output_filename(A, C))
Exemple #22
0
def grped_pmf(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    logger.info('pt_dd: {0}'.format(pt_dd))

    dsets = grp_datasets(data,  pt_dd)
    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)
    logger.info('col: {0}, row; {1}'.format(ncol, nrow))

    fig = plt.figure(figsize=pt_dd.get('figsize', [16,9]))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    for dsetc, dsetk in enumerate(dsets.keys()): # dsetc: dset counter
        ax = fig.add_subplot(nrow, ncol, dsetc+1)
        # da.shape: (x, 3, y), where x: # of replicas; 3: the shape of [bn, pmf, pmf_e],
        # y: # of bn, pmf, or pmf_e of each subgroup
        for k, gk in enumerate(dsets[dsetk].keys()):
            da = data[gk]
            pre_pmfm = da.mean(axis=0) # means over x, DIM: (3, y)
            pre_pmfe = U.sem3(da)      # sems  over x, DIM: (3, y)

            if 'pmf_cutoff' in pt_dd:
                cf = float(pt_dd['pmf_cutoff'])
                bs, es = filter_pmf_data(pre_pmfm, cf) # get slicing indices
            else:
                bs, es = filter_pmf_data(pre_pmfm)
                
            bn, pmfm, _ = sliceit(pre_pmfm, bs, es)  # bn: bin; pmfm: pmf mean
            bne, pmfe, _ = sliceit(pre_pmfe, bs, es) # bne: bin err; pmfe: pmf err

            # pmf sem, equivalent to stats.sem(da, axis=0)
            pmfe = sliceit(pre_pmfe, bs, es)[1] # tricky: 1 corresponds err of pmf mean

            # now, prepare the errobars for the fit
            _pfits, _ks, _l0s = [], [], []
            for subda in da:
                sliced = sliceit(subda, bs, es)
                bn, pm, pe = sliced
                a, b, c = np.polyfit(bn, pm, deg=2)
                _pfv = parabola(bn, a, b, c)                    # pfv: pmf fit values
                _pfits.append(_pfv)
                _ks.append(convert_k(a))
                _l0s.append(-b/(2*a))
            logger.info('modulus values for {0}'.format(pt_dd['grp_REs'][dsetc]))
            for _ in _ks:
                logger.info(' {0}'.format(_))

            _pfit = np.mean(_pfits, axis=0)
            _k    = np.mean(_ks)                   # prefix it with _ to avoid confusion
            _ke   = U.sem(_ks)
            _l0   = np.mean(_l0s)
            _l0e  = U.sem(_l0s)
            _r2   = U.calc_r2(pmfm, _pfit)
            _ky, _kye  = ky(_k, _l0, _ke, _l0e)

            ax.annotate('\n'.join(['k   = {0:.1f} $\pm$ {1:.1f} pN/nm'.format(_k, _ke),
                                   'd$_0$  = {0:.1f} $\pm$ {1:.1f} nm'.format(_l0, _l0e),
                                   'r$^2$ = {0:.2f}'.format(_r2)]),
                        **pt_dd['annotate'])

            # ax.text(s = '\n'.join(['k   = {0:.1f} $\pm$ {1:.1f} pN/nm'.format(_k, _ke),
            #                        'd$_0$  = {0:.1f} $\pm$ {1:.1f} nm'.format(_l0, _l0e),
            #                        'r$^2$ = {0:.2f}'.format(_r2)]),
            #         # 'ky  = {0:.1f} +/- {1:.1f} MPa'.format(_ky, _kye)]),
            #         **pt_dd['text'])

            params = get_params(gk, pt_dd)
            line = ax.plot(bn, pmfm, **params)
            ax.fill_between(bn, pmfm-pmfe, pmfm+pmfe, 
                            where=None, facecolor=line[0].get_color(), alpha=.3)

            ax.plot(bn, _pfit, '--', color=line[0].get_color())
        decorate_ax(ax, gk, pt_dd, ncol, nrow, dsetc)

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #23
0
def grped_pmf(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)
    logger.info('pt_dd: {0}'.format(pt_dd))

    dsets = grp_datasets(data, pt_dd)
    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)
    logger.info('col: {0}, row; {1}'.format(ncol, nrow))

    fig = plt.figure(figsize=pt_dd.get('figsize', [16, 9]))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    for dsetc, dsetk in enumerate(dsets.keys()):  # dsetc: dset counter
        ax = fig.add_subplot(nrow, ncol, dsetc + 1)
        # da.shape: (x, 3, y), where x: # of replicas; 3: the shape of [bn, pmf, pmf_e],
        # y: # of bn, pmf, or pmf_e of each subgroup
        for k, gk in enumerate(dsets[dsetk].keys()):
            da = data[gk]
            pre_pmfm = da.mean(axis=0)  # means over x, DIM: (3, y)
            pre_pmfe = U.sem3(da)  # sems  over x, DIM: (3, y)

            if 'pmf_cutoff' in pt_dd:
                cf = float(pt_dd['pmf_cutoff'])
                bs, es = filter_pmf_data(pre_pmfm, cf)  # get slicing indices
            else:
                bs, es = filter_pmf_data(pre_pmfm)

            bn, pmfm, _ = sliceit(pre_pmfm, bs, es)  # bn: bin; pmfm: pmf mean
            bne, pmfe, _ = sliceit(pre_pmfe, bs,
                                   es)  # bne: bin err; pmfe: pmf err

            # pmf sem, equivalent to stats.sem(da, axis=0)
            pmfe = sliceit(pre_pmfe, bs,
                           es)[1]  # tricky: 1 corresponds err of pmf mean

            # now, prepare the errobars for the fit
            _pfits, _ks, _l0s = [], [], []
            for subda in da:
                sliced = sliceit(subda, bs, es)
                bn, pm, pe = sliced
                a, b, c = np.polyfit(bn, pm, deg=2)
                _pfv = parabola(bn, a, b, c)  # pfv: pmf fit values
                _pfits.append(_pfv)
                _ks.append(convert_k(a))
                _l0s.append(-b / (2 * a))
            logger.info('modulus values for {0}'.format(
                pt_dd['grp_REs'][dsetc]))
            for _ in _ks:
                logger.info(' {0}'.format(_))

            _pfit = np.mean(_pfits, axis=0)
            _k = np.mean(_ks)  # prefix it with _ to avoid confusion
            _ke = U.sem(_ks)
            _l0 = np.mean(_l0s)
            _l0e = U.sem(_l0s)
            _r2 = U.calc_r2(pmfm, _pfit)
            _ky, _kye = ky(_k, _l0, _ke, _l0e)

            ax.annotate(
                '\n'.join([
                    'k   = {0:.1f} $\pm$ {1:.1f} pN/nm'.format(_k, _ke),
                    'd$_0$  = {0:.1f} $\pm$ {1:.1f} nm'.format(_l0, _l0e),
                    'r$^2$ = {0:.2f}'.format(_r2)
                ]), **pt_dd['annotate'])

            # ax.text(s = '\n'.join(['k   = {0:.1f} $\pm$ {1:.1f} pN/nm'.format(_k, _ke),
            #                        'd$_0$  = {0:.1f} $\pm$ {1:.1f} nm'.format(_l0, _l0e),
            #                        'r$^2$ = {0:.2f}'.format(_r2)]),
            #         # 'ky  = {0:.1f} +/- {1:.1f} MPa'.format(_ky, _kye)]),
            #         **pt_dd['text'])

            params = get_params(gk, pt_dd)
            line = ax.plot(bn, pmfm, **params)
            ax.fill_between(bn,
                            pmfm - pmfe,
                            pmfm + pmfe,
                            where=None,
                            facecolor=line[0].get_color(),
                            alpha=.3)

            ax.plot(bn, _pfit, '--', color=line[0].get_color())
        decorate_ax(ax, gk, pt_dd, ncol, nrow, dsetc)

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #24
0
def imap(data, A, C, **kw):
    """imap: interaction map"""
    logger.info('start plotting interaction map...')
    pt_dd = U.get_pt_dd(C, A.property, A.plot_type)

    fig = plt.figure(figsize=(12, 9))
    col, row = U.gen_rc(len(data.keys()), pt_dd)
    grid = ImageGrid(fig,
                     111,
                     nrows_ncols=(row, col),
                     axes_pad=0.3,
                     add_all=True,
                     label_mode="L")

    if 'denorminators' in pt_dd:
        for gk in data:
            dn = U.get_param(pt_dd['denorminators'], gk)
            logger.info('denorminator: {0}'.format(dn))
            data[gk] = data[gk] / dn

    # used to set up the reference point and the range of color bar
    max_ = get_max(data)
    for k, gk in enumerate(data.keys()):
        ax = grid[k]

        da = data[gk]
        rda = da
        logger.info('map max: {0}; map min: {1}'.format(rda.max(), rda.min()))

        # JUST FOR REFERENCE OF SEEING WHERE THE END POINTS ARE, DEBUGGING USES
        # rda[-1][-1] = max_
        # rda[0][-1] = max_

        # sophisticated reversal to make x axis donor, y axis acceptor
        # rda = np.array([i[::-1] for i in da.transpose()[::-1]])

        # sophisticated reversal to make x axis acceptor, y axis donor
        # rda = np.array([i[::-1] for i in da[::-1]])

        params = get_params(gk, pt_dd)
        logger.info(params)
        # cmap_options: hot, gist_heat, Orange (printer friendly)

        # remove the info about the Hbonding information about first residue,
        # which ACE, this make the final map easier to understand
        rda = np.delete(np.delete(rda, 0, 0), 0, 1)

        im = ax.pcolormesh(rda, **params)

        if 'clim' in pt_dd:
            im.set_clim(**pt_dd['clim'])
        else:
            im.set_clim(0, max_)

        logger.info('shape after removal of the 0th residue: {0}'.format(
            rda.shape))
        ax.set_xlim([0, rda.shape[0]])
        ax.set_ylim([0, rda.shape[1]])

        ax.minorticks_on()
        decorate_ax(ax, pt_dd, gk)

    plt.colorbar(im, shrink=.5, orientation='vertical', anchor=(1.3, 0))
    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #25
0
def grped_distr(data, A, C, **kw):
    """
    data structure of data, an OrderedDict
    data = {
        'groupkey0': [[array of bn0, , array of psm0, array of pse0], [mean0, std0]],
        'groupkey1': [[array of bn1, , array of psm1, array of pse1], [mean1, std1]],
        ...
        }
    """
    if A.plot_type in ['grped_distr_ave']:
        for k in data.keys():
            data[k] = pickle.loads(data[k])

    logger.info('start plotting {0} for \n{1}'.format(A.plot_type, pprint.pformat(data.keys())))

    # This is trying to avoid duplication in .xitconfig, but not very elegant
    if A.plot_type in ['grped_distr', 'grped_distr_ave']:
        _ = 'grped_distr'
    elif A.plot_type in ['grped_alx']:
        _ = 'grped_alx'

    pt_dd = U.get_pt_dd(C, A.property, _)
    dsets = grp_datasets(data,  pt_dd)
    ncol, nrow = U.gen_rc(len(dsets.keys()), pt_dd)

    fig = plt.figure(figsize=pt_dd.get('figsize', (12,9)))
    if 'subplots_adjust' in pt_dd:
        fig.subplots_adjust(**pt_dd['subplots_adjust'])

    logger.info('Chosen # of cols: {0}, # of rows; {1}'.format(ncol, nrow))
    for c, dsetk in enumerate(dsets.keys()):
        ax = fig.add_subplot(nrow, ncol, c+1)
        dset = dsets[dsetk]
        if 'text' in dset:
            ax.text(s=dset['text'], **pt_dd['text'])
        for kkey in dset['data']: # ind: individual
            da = dset['data'][kkey]
            params = get_params(kkey, pt_dd)
            if A.plot_type in ['grped_distr', 'grped_alx']:
                line = ax.plot(da[0], da[1], **params)
                # facecolor uses the same color as ax.plot
                if ('fill_between' not in pt_dd) or (pt_dd['fill_between'] == True):
                    # the condition means that by default do fill_between
                    # unless it is explicitly set to False
                    ax.fill_between(da[0], da[1]-da[2], da[1]+da[2], 
                                    where=None, facecolor=line[0].get_color(), alpha=.3)
            elif A.plot_type == 'grped_distr_ave':
                # the data slicing can be confusing, refer to plot.py to see how to
                # data is structured
                line = ax.plot(da[0][0], da[0][1], **params)
                # facecolor uses the same color as ax.plot
                ax.fill_between(da[0][0], da[0][1]-da[0][2], da[0][1]+da[0][2], 
                                where=None, facecolor=line[0].get_color(), alpha=.3)

                # now, plot the vertical bar showing the average value
                m = da[1][0]    # mean
                e = da[1][1]    # error
                
                ave_y = pt_dd.get('ave_y', [0,1])
                ax.plot([m,m], ave_y, color=params.get('color'))
                ax.fill_betweenx(ave_y, [m-e, m-e], [m+e, m+e],
                                 where=None, facecolor=line[0].get_color(), alpha=.3)

            if pt_dd.get('gaussian_fit'):
                # maybe it's better to use p0 for curve_fit
                popt, pcov = curve_fit(gaussian, da[0], da[1])
                _, mu, sigma = popt
                logger.info('mean of the fitted normal distribution: {0}'.format(mu))
                new_ys = gaussian(da[0], *popt)
                # pearsonr creates different value from that by calc_r2
                # corr, p_val = pearsonr(ys, new_ys)
                r2 = U.calc_r2(da[1], new_ys)
                ax.plot(da[0], new_ys, linewidth="4", 
                        color='black', label='r$^2$ = {0:.3f}'.format(r2))

        # plot a vertical line if needed, e.g. showing the time of convergence
        if 'vline' in pt_dd:
            vl = pt_dd['vline']
            x = vl['x']
            if 'y' in vl:
                yb, ye = vl['y']
            else:
                yb, ye = ax.get_ylim()
            ax.plot([x, x], [yb, ye], **vl.get('vline_params', {}))

        decorate_ax(ax, pt_dd, ncol, nrow, c)

        # specific case
        if (A.property == 'rg_c_alpha_wl' 
            and dsetk == 'dset0' 
            and A.plot_type == 'grped_alx'
            and sorted(dset['data'].keys()) == ['m300/sq1', 'w300/sq1']):
            print "DO something special"
            ax.set_xlim([0, 500])
            ax.set_xticklabels([str(i) for i in xrange(0,600, 100)])
            for tick in ax.xaxis.get_major_ticks():
                tick.label1On = False
                tick.label2On = True # move the ticks to the top 

        if 'legend_linewidth' in pt_dd:
            leg = ax.get_legend()
            lines = leg.get_lines()
            for _ in lines:
                _.set_linewidth(pt_dd['legend_linewidth'])

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #26
0
Fichier : xy.py Projet : zyxue/xit
def grped_xy(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    dsets = grp_datasets(data, pt_dd)
    
    fig = plt.figure()
    ax = fig.add_subplot(111)

    xp, yp = A.properties
    if sorted([xp, yp]) == ['unv', 'upv']:                # this is plot specific
        ax.plot([0,1], [0,1], '--')

    for dk in dsets.keys():
        dset = dsets[dk]

        xda, yda = dset[xp], dset[yp]                       # da: data

        # denormx = [float(i) for i in pt_dd.get('denormx', [1] * len(xdata.keys()))]
        # denormy = [float(i) for i in pt_dd.get('denormy', [1] * len(xdata.keys()))]

        k1, k2 = xda.keys()             # ONLY deal with two members in a group (e.g. w, m)
        x1, x2 = xda[k1], xda[k2]
        y1, y2 = yda[k1], yda[k2]

        # DEPRECATED! normalization should be done in plot.py, this is left
        # here for remembering the bad design
        # if 'denormx' in pt_dd:
        #     dx1 = float(pt_dd['denormx'][k1])               # dx: denormx
        #     dx2 = float(pt_dd['denormx'][k2])
        #     x1, x2 = x1 / dx1, x2 / dx2
        # if 'denormy' in pt_dd:
        #     dy1 = float(pt_dd['denormy'][k1])               # dy: denormy
        #     dy2 = float(pt_dd['denormy'][k2])
        #     y1, y2 = y1 / dy1, y2 / dy2

        params1, params2 = {}, {}
        if 'markers' in pt_dd:
            params1['marker'] = U.get_param(pt_dd['markers'], k1)
            params2['marker'] = U.get_param(pt_dd['markers'], k2)

        if 'colors' in pt_dd:
            params1['color'] = U.get_param(pt_dd['colors'], k1)
            params2['color'] = U.get_param(pt_dd['colors'], k2)
        
        ax.errorbar(x1[0], y1[0], xerr=x1[1], yerr=y1[1], **params1)
        ax.errorbar(x2[0], y2[0], xerr=x2[1], yerr=y2[1], **params2)
        
        ax.annotate("",
                    # STRANGE! the order need to be reversed                                   
                    xy=(x2[0], y2[0]), xycoords='data',                                        
                    xytext=(x1[0], y1[0]), textcoords='data',                                  
                    arrowprops=dict(arrowstyle="->", #linestyle="dashed",
                                    # arrowstyle="fancy",
                                    color="black",
                                    alpha=1,
                                    shrinkA=10,
                                    shrinkB=10,
                                    # connectionstyle="arc3,rad=-0.3",
                                    connectionstyle="arc3",
                                    ),
                    )

    decorate_ax(ax, pt_dd)


    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))
Exemple #27
0
Fichier : xy.py Projet : zyxue/xit
def grped_xy(data, A, C, **kw):
    pt_dd = U.get_pt_dd(C, '_'.join(A.properties), A.plotmp_type)
    dsets = grp_datasets(data, pt_dd)

    fig = plt.figure()
    ax = fig.add_subplot(111)

    xp, yp = A.properties
    if sorted([xp, yp]) == ['unv', 'upv']:  # this is plot specific
        ax.plot([0, 1], [0, 1], '--')

    for dk in dsets.keys():
        dset = dsets[dk]

        xda, yda = dset[xp], dset[yp]  # da: data

        # denormx = [float(i) for i in pt_dd.get('denormx', [1] * len(xdata.keys()))]
        # denormy = [float(i) for i in pt_dd.get('denormy', [1] * len(xdata.keys()))]

        k1, k2 = xda.keys(
        )  # ONLY deal with two members in a group (e.g. w, m)
        x1, x2 = xda[k1], xda[k2]
        y1, y2 = yda[k1], yda[k2]

        # DEPRECATED! normalization should be done in plot.py, this is left
        # here for remembering the bad design
        # if 'denormx' in pt_dd:
        #     dx1 = float(pt_dd['denormx'][k1])               # dx: denormx
        #     dx2 = float(pt_dd['denormx'][k2])
        #     x1, x2 = x1 / dx1, x2 / dx2
        # if 'denormy' in pt_dd:
        #     dy1 = float(pt_dd['denormy'][k1])               # dy: denormy
        #     dy2 = float(pt_dd['denormy'][k2])
        #     y1, y2 = y1 / dy1, y2 / dy2

        params1, params2 = {}, {}
        if 'markers' in pt_dd:
            params1['marker'] = U.get_param(pt_dd['markers'], k1)
            params2['marker'] = U.get_param(pt_dd['markers'], k2)

        if 'colors' in pt_dd:
            params1['color'] = U.get_param(pt_dd['colors'], k1)
            params2['color'] = U.get_param(pt_dd['colors'], k2)

        ax.errorbar(x1[0], y1[0], xerr=x1[1], yerr=y1[1], **params1)
        ax.errorbar(x2[0], y2[0], xerr=x2[1], yerr=y2[1], **params2)

        ax.annotate(
            "",
            # STRANGE! the order need to be reversed
            xy=(x2[0], y2[0]),
            xycoords='data',
            xytext=(x1[0], y1[0]),
            textcoords='data',
            arrowprops=dict(
                arrowstyle="->",  #linestyle="dashed",
                # arrowstyle="fancy",
                color="black",
                alpha=1,
                shrinkA=10,
                shrinkB=10,
                # connectionstyle="arc3,rad=-0.3",
                connectionstyle="arc3",
            ),
        )

    decorate_ax(ax, pt_dd)

    plt.savefig(U.gen_output_filename(A, C), **pt_dd.get('savefig', {}))