def data_build(self):
        if isinstance(self.x_raw, pd.DataFrame):
            self.x_tensor = utils.get_tensor(self.x_raw)
        elif isinstance(self.x_raw, torch.Tensor):
            self.x_tensor = self.x_raw
        else:
            self.logger.dbg('type x_raw', type(self.x_raw))
        self.x = Variable(self.x_tensor, requires_grad=False)
        self.D_in = len(self.x_tensor[0])

        self.y_tensor = utils.get_tensor(self.y_raw, 'long')
        self.y = Variable(self.y_tensor, requires_grad=False).squeeze(1)
        self.D_out = len(self.y_tensor[0])
Exemple #2
0
def processImage(infile, args):
    n_classes = 12
    model = LinkNet(n_classes)
    model.load_state_dict(torch.load(args.model_path))
    if torch.cuda.is_available():
        model = model.cuda(0)
    model.eval()
    gif = cv2.VideoCapture(infile)
    cv2.namedWindow('camvid')
    while (gif.isOpened()):
        ret, frame = gif.read()
        frame = cv2.resize(frame, (768, 576))
        images = get_tensor(frame)
        if torch.cuda.is_available():
            images = Variable(images.cuda(0))
        else:
            images = Variable(images)
        outputs = model(images)
        pred = outputs.data.max(1)[1].cpu().numpy().reshape(576, 768)
        pred = decode_segmap(pred)
        vis = np.zeros((576, 1536, 3), np.uint8)
        vis[:576, :768, :3] = frame
        vis[:576, 768:1536, :3] = pred
        cv2.imshow('camvid', vis)
        cv2.waitKey(10)
Exemple #3
0
    def _pred(self, x_df, y_df=None, data='confusion_matrix', format='tensor'):
        assert isinstance(x_df, pd.DataFrame)
        if y_df is not None: assert isinstance(y_df, pd.DataFrame)
        x_tensor = utils.get_tensor(x_df)

        y_tensor = self.df_to_tensor(y_df)

        y_pred_prob = self.model(Variable(x_tensor))

        # y_pred = x_tensor.mm(w1).clamp(min=0).mm(w2)
        if data == 'loss':
            loss = self.loss_fn(y_pred_prob, Variable(y_tensor))
            result = loss.data[0]
            return result
        elif data == 'pred':
            data_tensor = y_pred_prob.data
        else:  # data == 'confusion_matrix':
            y_pred, total_type_num = utils.max_ix(y_pred_prob.data)
            # total_type_num = len(self.ix_to_label)
            data_tensor = utils.confusion_matrix(y_pred, y_tensor,
                                                 total_type_num)

        if format == 'df':
            result = pd.DataFrame(data_tensor.numpy())
        elif format == 'np':
            result = data_tensor.numpy()
        else:  # format == 'tensor':
            result = data_tensor
        return result
    def model_build(self):
        if isinstance(self.x_raw, pd.DataFrame):
            self.x_tensor = utils.get_tensor(self.x_raw)
            self.logger.dbg('type xtensor', type(self.x_tensor))
        elif isinstance(self.x_raw, torch.Tensor):
            self.x_tensor = self.x_raw
        self.x = Variable(self.x_tensor, requires_grad=False)
        self.D_in = len(self.x_tensor[0])

        self.y_tensor = utils.get_tensor(self.y_raw, 'long')
        self.y = Variable(self.y_tensor, requires_grad=False).squeeze(1)
        self.D_out = len(self.y_tensor[0])

        self.T_out, _ = np.unique(self.y_tensor.numpy(), return_inverse=True)

        self.model = OneTargetClassifier(self.D_in, len(self.T_out))
        self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr)
        self.loss_fn = torch.nn.NLLLoss()
Exemple #5
0
    def model_build(self):
        if isinstance(self.x_raw, pd.DataFrame):
            self.x_tensor = utils.get_tensor(self.x_raw)
            self.logger.dbg('type xtensor', type(self.x_tensor))
        elif isinstance(self.x_raw, torch.Tensor):
            self.x_tensor = self.x_raw
        self.x = Variable(self.x_tensor, requires_grad=False)
        self.D_in = len(self.x_tensor[0])

        self.y_tensor = utils.get_tensor(self.y_raw)
        self.y = Variable(self.y_tensor, requires_grad=False)
        self.D_out = len(self.y_tensor[0])

        self.model = torch.nn.Sequential(
            torch.nn.Linear(self.D_in, self.H),
            torch.nn.ReLU(),
            torch.nn.Linear(self.H, self.D_out),
        )
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)

        self.loss_fn = torch.nn.MSELoss(size_average=False)
 def df_to_tensor(self, df):
     return utils.get_tensor(df, 'long').squeeze(1)
Exemple #7
0
    )  # Block 4 weights

    # Show learnt Conv2D kernels
    # utils.plot_kernels(weights_l1, 4, 2, 'Encoder Block 1 Kernels')
    # utils.plot_kernels(weights_l2, 4, 4, 'Encoder Block 2 Kernels')
    # utils.plot_kernels(weights_l2, 6, 5, 'Encoder Block 3 Kernels')
    # utils.plot_kernels(weights_l2, 8, 8, 'Encoder Block 4 Kernels')

    # %% View the reconstruction performance with random test sample

    # Select randomly one sample
    idx = test_part[np.random.randint(len(test_part))]

    # Extracts data from the sample and transform them into tensors
    waterfalls = utils.get_tensor(dataset[idx]['Waterfalls'],
                                  float_cast=True,
                                  unsqueeze=2).cpu()
    signals = utils.get_tensor(dataset[idx]['SignalWaterfalls'],
                               float_cast=True,
                               unsqueeze=2).cpu()

    # Extract parameters from the sample
    parameters = dataset[idx]['Parameters']

    # Use the waterfalls sample to evaluate the model
    net.eval()
    with torch.no_grad():
        output = net.forward(waterfalls, depth=6)

    # Plot the waterfalls, the output of the network and the waterfalls without the noise
    utils.plot_reconstruction(waterfalls,
Exemple #8
0
 def df_to_tensor(self, df):
     return utils.get_tensor(df)