Exemple #1
0
    def load_ct_dataset(self, dataset, is_train=True,is_registered=False,grayscale_corrected=True):
        '''
        dataset: list of dataset such as ['train\GB1', 'train\B1M6'] 
        '''
        if is_train:
            print('Loading train ct datasets...')
            train_set = utils.get_training_set(self.data_dir, 
                                               dataset,
                                               self.crop_size,
                                               self.scale_factor,
                                               registered=is_registered,
                                               grayscale_corrected=grayscale_corrected)
            return DataLoader(dataset=train_set, num_workers=self.num_threads, batch_size=self.batch_size,
                              shuffle=True)
        else:
            print('Loading test ct datasets...')
            test_set = utils.get_test_set(self.data_dir, 
                                              dataset,
                                              self.crop_size, 
                                              self.scale_factor,
                                              registered=is_registered,
                                              grayscale_corrected=grayscale_corrected)

            return DataLoader(dataset=test_set, num_workers=self.num_threads,
                              batch_size=self.test_batch_size,
                              shuffle=False)  
Exemple #2
0
            if self.drawon:
                self.ax.figure.canvas.draw()
            self.val = val
            if not self.eventson:
                return
            for cid, func in self.observers.items():
                func(discrete_val)

    def update_val_external(self, val, max_val):
        self.set_val(val, max_val)


net = get_net()
net.eval()

data_set = get_test_set()

tsDataloader = DataLoader(data_set,
                          batch_size=len(data_set),
                          shuffle=True,
                          num_workers=8,
                          collate_fn=data_set.collate_fn)

len_pred = int(args.time_pred / args.dt)
lossVals = torch.zeros(len_pred).to(args.device)
counts = torch.zeros(len_pred).to(args.device)

delta = 0.3
x_min = -100
x_max = 100
y_min = -15
Exemple #3
0
from inputs import inputs
from models import SegNetAutoencoder
from scalar_ops import accuracy, loss

import classifier
import config
import tensorflow as tf
import utils

test_file, test_labels_file = utils.get_test_set(config.working_dataset, include_labels=True)

tf.app.flags.DEFINE_string('ckpt_dir', './ckpts', 'Train checkpoint directory')
tf.app.flags.DEFINE_string('test', test_file, 'Test data')
tf.app.flags.DEFINE_string('test_labels', test_labels_file, 'Test labels data')
tf.app.flags.DEFINE_string('test_logs', './logs/test', 'Log directory')

tf.app.flags.DEFINE_boolean('strided', True, 'Use strided convolutions and deconvolutions')

tf.app.flags.DEFINE_integer('batch', 200, 'Batch size')

FLAGS = tf.app.flags.FLAGS

def test():
  images, labels = inputs(FLAGS.batch, FLAGS.test, FLAGS.test_labels)
  tf.summary.image('labels', labels)
  one_hot_labels = classifier.one_hot(labels)

  autoencoder = SegNetAutoencoder(4, strided=FLAGS.strided)
  logits = autoencoder.inference(images)

  accuracy_op = accuracy(logits, one_hot_labels, FLAGS.batch)
import torch
from torch.utils.data import DataLoader
import numpy as np

from losses import maskedNLL, maskedMSE

from utils import Settings, get_net, get_test_set

if __name__ == '__main__':
    args = Settings()

    net = get_net()

    testSet = get_test_set()

    testDataloader = DataLoader(testSet,
                                batch_size=args.batch_size,
                                shuffle=False,
                                num_workers=args.num_workers,
                                collate_fn=testSet.collate_fn)

    net.train_flag = False
    it_testDataloader = iter(testDataloader)
    len_test = len(it_testDataloader)
    avg_loss = 0
    hist_test = []
    fut_test = []
    pred_test = []
    proba_man_test = []
    mask_test = []
    for j in range(len_test):
Exemple #5
0
parser.add_argument('--gpuids',
                    default=[0, 1, 2, 3],
                    nargs='+',
                    help='GPU ID for using')
parser.add_argument('--cuda', action='store_true', help='use cuda?')
opt = parser.parse_args()

opt.gpuids = list(map(int, opt.gpuids))
print(opt)

use_cuda = opt.cuda
if use_cuda and not torch.cuda.is_available():
    raise Exception("No GPU found, please run without --cuda")

train_set = get_training_dataset(opt.upscale_factor)
test_set = get_test_set(opt.upscale_factor)

training_data_loader = DataLoader(dataset=train_set,
                                  num_workers=2,
                                  batch_size=128,
                                  shuffle=True)
testing_data_loader = DataLoader(dataset=test_set,
                                 num_workers=2,
                                 batch_size=100,
                                 shuffle=False)

print("Building model...")
net = VGG('VGG19')
best_acc = 0

if use_cuda:
Exemple #6
0
                    default=4,
                    help='Number of thread for DataLoader')

opt = parser.parse_args()

print(opt)

if isCuda and not torch.cuda.is_available():
    raise Exception("No GPU, please change isCuda False")

device = torch.device("cuda" if isCuda else "cpu")

print('===> Loading datasets')

train_set = get_training_set(opt.upscale_factor, opt.datapath)
test_set = get_test_set(opt.upscale_factor, opt.datapath)

training_data_loader = DataLoader(dataset=train_set,
                                  num_workers=opt.threads,
                                  batch_size=batchSize,
                                  shuffle=True)
testing_data_loader = DataLoader(dataset=test_set,
                                 num_workers=opt.threads,
                                 batch_size=testBatchSize,
                                 shuffle=False)

print('===> Datasets Loading Complete')

print('===> Model Initialize')

if opt.model == "Upconv":