Exemple #1
0
def main( conf_file='config.cfg', logfile=None ):
    #%% parameters
    print "reading config parameters..."
    config, pars = front_end.parser( conf_file )

    if pars.has_key('logging') and pars['logging']:
        print "recording configuration file..."
        front_end.record_config_file( pars )

        logfile = front_end.make_logfile_name( pars )

    #%% create and initialize the network
    if pars['train_load_net'] and os.path.exists(pars['train_load_net']):
        print "loading network..."
        net = netio.load_network( pars )
        # load existing learning curve
        lc = zstatistics.CLearnCurve( pars['train_load_net'] )
    else:
        if pars['train_seed_net'] and os.path.exists(pars['train_seed_net']):
            print "seeding network..."
            net = netio.load_network( pars, is_seed=True )
        else:
            print "initializing network..."
            net = netio.init_network( pars )
        # initalize a learning curve
        lc = zstatistics.CLearnCurve()

    # show field of view
    print "field of view: ", net.get_fov()
    print "output volume info: ", net.get_outputs_setsz()

    # set some parameters
    print 'setting up the network...'
    vn = utils.get_total_num(net.get_outputs_setsz())
    eta = pars['eta'] #/ vn
    net.set_eta( eta )
    net.set_momentum( pars['momentum'] )
    net.set_weight_decay( pars['weight_decay'] )

    # initialize samples
    outsz = pars['train_outsz']
    print "\n\ncreate train samples..."
    smp_trn = front_end.CSamples(config, pars, pars['train_range'], net, outsz, logfile)
    print "\n\ncreate test samples..."
    smp_tst = front_end.CSamples(config, pars, pars['test_range'],  net, outsz, logfile)

    # initialization
    elapsed = 0
    err = 0
    cls = 0

    # interactive visualization
    plt.ion()
    plt.show()

    # the last iteration we want to continue training
    iter_last = lc.get_last_it()


    print "start training..."
    start = time.time()
    print "start from ", iter_last+1
    for i in xrange(iter_last+1, pars['Max_iter']+1):
        vol_ins, lbl_outs, msks = smp_trn.get_random_sample()

        # forward pass
        vol_ins = utils.make_continuous(vol_ins, dtype=pars['dtype'])

        props = net.forward( vol_ins )

        # cost function and accumulate errors
        props, cerr, grdts = pars['cost_fn']( props, lbl_outs )
        err = err + cerr
        cls = cls + cost_fn.get_cls(props, lbl_outs)

        # mask process the gradient
        grdts = utils.dict_mul(grdts, msks)

        # run backward pass
        grdts = utils.make_continuous(grdts, dtype=pars['dtype'])
        net.backward( grdts )

        if pars['is_malis'] :
            malis_weights = cost_fn.malis_weight(props, lbl_outs)
            grdts = utils.dict_mul(grdts, malis_weights)

        if i%pars['Num_iter_per_test']==0:
            # test the net
            lc = test.znn_test(net, pars, smp_tst, vn, i, lc)

        if i%pars['Num_iter_per_show']==0:
            # anneal factor
            eta = eta * pars['anneal_factor']
            net.set_eta(eta)
            # normalize
            err = err / vn / pars['Num_iter_per_show']
            cls = cls / vn / pars['Num_iter_per_show']
            lc.append_train(i, err, cls)

            # time
            elapsed = time.time() - start
            elapsed = elapsed / pars['Num_iter_per_show']

            show_string = "iteration %d,    err: %.3f,    cls: %.3f,   elapsed: %.1f s/iter, learning rate: %.6f"\
                    %(i, err, cls, elapsed, eta )

            if pars.has_key('logging') and pars['logging']:
                utils.write_to_log(logfile, show_string)
            print show_string

            if pars['is_visual']:
                # show results To-do: run in a separate thread
                front_end.inter_show(start, lc, eta, vol_ins, props, lbl_outs, grdts, pars)
                if pars['is_rebalance'] and 'aff' not in pars['out_type']:
                    plt.subplot(247)
                    plt.imshow(msks.values()[0][0,0,:,:], interpolation='nearest', cmap='gray')
                    plt.xlabel('rebalance weight')
                if pars['is_malis']:
                    plt.subplot(248)
                    plt.imshow(malis_weights.values()[0][0,0,:,:], interpolation='nearest', cmap='gray')
                    plt.xlabel('malis weight (log)')
                plt.pause(2)
                plt.show()
            # reset err and cls
            err = 0
            cls = 0
            # reset time
            start = time.time()

        if i%pars['Num_iter_per_save']==0:
            # save network
            netio.save_network(net, pars['train_save_net'], num_iters=i)
            lc.save( pars, elapsed )
Exemple #2
0
def main( conf_file='config.cfg', logfile=None ):
    #%% parameters
    print "reading config parameters..."
    config, pars = zconfig.parser( conf_file )

    if pars.has_key('logging') and pars['logging']:
        print "recording configuration file..."
        zlog.record_config_file( pars )

        logfile = zlog.make_logfile_name( pars )

    #%% create and initialize the network
    if pars['train_load_net'] and os.path.exists(pars['train_load_net']):
        print "loading network..."
        net = znetio.load_network( pars )
        # load existing learning curve
        lc = zstatistics.CLearnCurve( pars['train_load_net'] )
        # the last iteration we want to continue training
        iter_last = lc.get_last_it()
    else:
        if pars['train_seed_net'] and os.path.exists(pars['train_seed_net']):
            print "seeding network..."
            net = znetio.load_network( pars, is_seed=True )
        else:
            print "initializing network..."
            net = znetio.init_network( pars )
        # initalize a learning curve
        lc = zstatistics.CLearnCurve()
        iter_last = lc.get_last_it()

    # show field of view
    print "field of view: ", net.get_fov()

    # total voxel number of output volumes
    vn = utils.get_total_num(net.get_outputs_setsz())

    # set some parameters
    print 'setting up the network...'
    eta = pars['eta']
    net.set_eta( pars['eta'] )
    net.set_momentum( pars['momentum'] )
    net.set_weight_decay( pars['weight_decay'] )

    # initialize samples
    outsz = pars['train_outsz']
    print "\n\ncreate train samples..."
    smp_trn = zsample.CSamples(config, pars, pars['train_range'], net, outsz, logfile)
    print "\n\ncreate test samples..."
    smp_tst = zsample.CSamples(config, pars, pars['test_range'],  net, outsz, logfile)

    # initialization
    elapsed = 0
    err = 0.0 # cost energy
    cls = 0.0 # pixel classification error
    re = 0.0  # rand error
    # number of voxels which accumulate error
    # (if a mask exists)
    num_mask_voxels = 0

    if pars['is_malis']:
        malis_cls = 0.0

    print "start training..."
    start = time.time()
    total_time = 0.0
    print "start from ", iter_last+1

    #Saving initialized network
    if iter_last+1 == 1:
        znetio.save_network(net, pars['train_save_net'], num_iters=0)
        lc.save( pars, 0.0 )

    for i in xrange(iter_last+1, pars['Max_iter']+1):
        # get random sub volume from sample
        vol_ins, lbl_outs, msks, wmsks = smp_trn.get_random_sample()

        # forward pass
        # apply the transformations in memory rather than array view
        vol_ins = utils.make_continuous(vol_ins, dtype=pars['dtype'])
        props = net.forward( vol_ins )

        # cost function and accumulate errors
        props, cerr, grdts = pars['cost_fn']( props, lbl_outs, msks )
        err += cerr
        cls += cost_fn.get_cls(props, lbl_outs)
        num_mask_voxels += utils.sum_over_dict(msks)

        # gradient reweighting
        grdts = utils.dict_mul( grdts, msks  )
        grdts = utils.dict_mul( grdts, wmsks )

        if pars['is_malis'] :
            malis_weights, rand_errors = cost_fn.malis_weight(pars, props, lbl_outs)
            grdts = utils.dict_mul(grdts, malis_weights)
            # accumulate the rand error
            re += rand_errors.values()[0]
            malis_cls_dict = utils.get_malis_cls( props, lbl_outs, malis_weights )
            malis_cls += malis_cls_dict.values()[0]


        total_time += time.time() - start
        start = time.time()

        # test the net
        if i%pars['Num_iter_per_test']==0:
            lc = test.znn_test(net, pars, smp_tst, vn, i, lc)

        if i%pars['Num_iter_per_show']==0:
            # normalize
            if utils.dict_mask_empty(msks):
                err = err / vn / pars['Num_iter_per_show']
                cls = cls / vn / pars['Num_iter_per_show']
            else:
                err = err / num_mask_voxels / pars['Num_iter_per_show']
                cls = cls / num_mask_voxels / pars['Num_iter_per_show']

            lc.append_train(i, err, cls)

            # time
            elapsed = total_time / pars['Num_iter_per_show']

            if pars['is_malis']:
                re = re / pars['Num_iter_per_show']
                lc.append_train_rand_error( re )
                malis_cls = malis_cls / pars['Num_iter_per_show']
                lc.append_train_malis_cls( malis_cls )

                show_string = "iteration %d,    err: %.3f, cls: %.3f, re: %.6f, mc: %.3f, elapsed: %.1f s/iter, learning rate: %.6f"\
                              %(i, err, cls, re, malis_cls, elapsed, eta )
            else:
                show_string = "iteration %d,    err: %.3f, cls: %.3f, elapsed: %.1f s/iter, learning rate: %.6f"\
                    %(i, err, cls, elapsed, eta )

            if pars.has_key('logging') and pars['logging']:
                utils.write_to_log(logfile, show_string)
            print show_string

            # reset err and cls
            err = 0
            cls = 0
            re = 0
            num_mask_voxels = 0

            if pars['is_malis']:
                malis_cls = 0

            # reset time
            total_time  = 0
            start = time.time()

        if i%pars['Num_iter_per_annealing']==0:
            # anneal factor
            eta = eta * pars['anneal_factor']
            net.set_eta(eta)

        if i%pars['Num_iter_per_save']==0:
            # save network
            znetio.save_network(net, pars['train_save_net'], num_iters=i)
            lc.save( pars, elapsed )
            if pars['is_malis']:
                utils.save_malis(malis_weights,  pars['train_save_net'], num_iters=i)

        # run backward pass
        grdts = utils.make_continuous(grdts, dtype=pars['dtype'])
        net.backward( grdts )
Exemple #3
0
def main(args):
    config, pars, logfile = parse_args(args)
    #%% create and initialize the network
    net, lc = znetio.create_net(pars)

    # total voxel number of output volumes
    vn = utils.get_total_num(net.get_outputs_setsz())

    # initialize samples
    outsz = pars['train_outsz']
    print "\n\ncreate train samples..."
    smp_trn = zsample.CSamples(config, pars, pars['train_range'], net, outsz,
                               logfile)
    print "\n\ncreate test samples..."
    smp_tst = zsample.CSamples(config, pars, pars['test_range'], net, outsz,
                               logfile)

    if pars['is_check']:
        import zcheck
        zcheck.check_patch(pars, smp_trn)
        # gradient check is not working now.
        # zcheck.check_gradient(pars, net, smp_trn)

    # initialization
    eta = pars['eta']
    elapsed = 0
    err = 0.0  # cost energy
    cls = 0.0  # pixel classification error
    re = 0.0  # rand error
    # number of voxels which accumulate error
    # (if a mask exists)
    num_mask_voxels = 0

    if pars['is_malis']:
        malis_cls = 0.0
        malis_eng = 0.0
    else:
        malis_weights = None

    # the last iteration we want to continue training
    iter_last = lc.get_last_it()

    print "start training..."
    start = time.time()
    total_time = 0.0
    print "start from ", iter_last + 1

    #Saving initial/seeded network
    # get file name
    fname, fname_current = znetio.get_net_fname(pars['train_net_prefix'],
                                                iter_last,
                                                suffix="init")
    znetio.save_network(net, fname, pars['is_stdio'])
    lc.save(pars, fname, elapsed=0.0, suffix="init_iter{}".format(iter_last))
    # no nan detected
    nonan = True

    for i in xrange(iter_last + 1, pars['Max_iter'] + 1):
        # time cumulation
        total_time += time.time() - start
        start = time.time()

        # get random sub volume from sample
        vol_ins, lbl_outs, msks, wmsks = smp_trn.get_random_sample()

        # forward pass
        # apply the transformations in memory rather than array view
        vol_ins = utils.make_continuous(vol_ins)
        props = net.forward(vol_ins)

        # cost function and accumulate errors
        props, cerr, grdts = pars['cost_fn'](props, lbl_outs, msks)
        err += cerr
        cls += cost_fn.get_cls(props, lbl_outs)
        # compute rand error
        if pars['is_debug']:
            assert not np.all(lbl_outs.values()[0] == 0)
        re += pyznn.get_rand_error(props.values()[0], lbl_outs.values()[0])
        num_mask_voxels += utils.sum_over_dict(msks)

        # check whether there is a NaN here!
        if pars['is_debug']:
            nonan = nonan and utils.check_dict_nan(vol_ins)
            nonan = nonan and utils.check_dict_nan(lbl_outs)
            nonan = nonan and utils.check_dict_nan(msks)
            nonan = nonan and utils.check_dict_nan(wmsks)
            nonan = nonan and utils.check_dict_nan(props)
            nonan = nonan and utils.check_dict_nan(grdts)
            if not nonan:
                utils.inter_save(pars, net, lc, vol_ins, props, lbl_outs, \
                             grdts, malis_weights, wmsks, elapsed, i)
                # stop training
                return

        # gradient reweighting
        grdts = utils.dict_mul(grdts, msks)
        if pars['rebalance_mode']:
            grdts = utils.dict_mul(grdts, wmsks)

        if pars['is_malis']:
            malis_weights, rand_errors, num_non_bdr = cost_fn.malis_weight(
                pars, props, lbl_outs)
            if num_non_bdr <= 1:
                # skip this iteration
                continue
            grdts = utils.dict_mul(grdts, malis_weights)
            dmc, dme = utils.get_malis_cost(props, lbl_outs, malis_weights)
            malis_cls += dmc.values()[0]
            malis_eng += dme.values()[0]

        # run backward pass
        grdts = utils.make_continuous(grdts)
        net.backward(grdts)

        total_time += time.time() - start
        start = time.time()

        if i % pars['Num_iter_per_show'] == 0:
            # time
            elapsed = total_time / pars['Num_iter_per_show']

            # normalize
            if utils.dict_mask_empty(msks):
                err = err / vn / pars['Num_iter_per_show']
                cls = cls / vn / pars['Num_iter_per_show']
            else:
                err = err / num_mask_voxels / pars['Num_iter_per_show']
                cls = cls / num_mask_voxels / pars['Num_iter_per_show']
            re = re / pars['Num_iter_per_show']
            lc.append_train(i, err, cls, re)

            if pars['is_malis']:
                malis_cls = malis_cls / pars['Num_iter_per_show']
                malis_eng = malis_eng / pars['Num_iter_per_show']
                lc.append_train_malis_cls(malis_cls)
                lc.append_train_malis_eng(malis_eng)

                show_string = "update %d,    cost: %.3f, pixel error: %.3f, rand error: %.3f, me: %.3f, mc: %.3f, elapsed: %.1f s/iter, learning rate: %.5f"\
                              %(i, err, cls, re, malis_eng, malis_cls, elapsed, eta )
            else:
                show_string = "update %d,    cost: %.3f, pixel error: %.3f, rand error: %.3f, elapsed: %.1f s/iter, learning rate: %.5f"\
                    %(i, err, cls, re, elapsed, eta )

            if pars.has_key('logging') and pars['logging']:
                utils.write_to_log(logfile, show_string)
            print show_string

            # reset err and cls
            err = 0
            cls = 0
            re = 0
            num_mask_voxels = 0

            if pars['is_malis']:
                malis_cls = 0

            # reset time
            total_time = 0
            start = time.time()

        # test the net
        if i % pars['Num_iter_per_test'] == 0:
            # time accumulation should skip the test
            total_time += time.time() - start
            lc = test.znn_test(net, pars, smp_tst, vn, i, lc)
            start = time.time()

        if i % pars['Num_iter_per_save'] == 0:
            utils.inter_save(pars, net, lc, vol_ins, props, lbl_outs, \
                             grdts, malis_weights, wmsks, elapsed, i)

        if i % pars['Num_iter_per_annealing'] == 0:
            # anneal factor
            eta = eta * pars['anneal_factor']
            net.set_eta(eta)

        # stop the iteration at checking mode
        if pars['is_check']:
            print "only need one iteration for checking, stop program..."
            break
def main(conf_file='config.cfg', logfile=None):
    #%% parameters
    print "reading config parameters..."
    config, pars = front_end.parser(conf_file)

    if pars.has_key('logging') and pars['logging']:
        print "recording configuration file..."
        front_end.record_config_file(pars)

        logfile = front_end.make_logfile_name(pars)

    #%% create and initialize the network
    if pars['train_load_net'] and os.path.exists(pars['train_load_net']):
        print "loading network..."
        net = netio.load_network(pars)
        # load existing learning curve
        lc = zstatistics.CLearnCurve(pars['train_load_net'])
    else:
        if pars['train_seed_net'] and os.path.exists(pars['train_seed_net']):
            print "seeding network..."
            net = netio.seed_network(pars, is_seed=True)
        else:
            print "initializing network..."
            net = netio.init_network(pars)
        # initalize a learning curve
        lc = zstatistics.CLearnCurve()

    # show field of view
    print "field of view: ", net.get_fov()
    print "output volume info: ", net.get_outputs_setsz()

    # set some parameters
    print 'setting up the network...'
    vn = utils.get_total_num(net.get_outputs_setsz())
    eta = pars['eta']  #/ vn
    net.set_eta(eta)
    net.set_momentum(pars['momentum'])
    net.set_weight_decay(pars['weight_decay'])

    # initialize samples
    outsz = pars['train_outsz']
    print "\n\ncreate train samples..."
    smp_trn = front_end.CSamples(config, pars, pars['train_range'], net, outsz,
                                 logfile)
    print "\n\ncreate test samples..."
    smp_tst = front_end.CSamples(config, pars, pars['test_range'], net, outsz,
                                 logfile)

    # initialization
    elapsed = 0
    err = 0
    cls = 0

    # interactive visualization
    plt.ion()
    plt.show()

    # the last iteration we want to continue training
    iter_last = lc.get_last_it()

    print "start training..."
    start = time.time()
    print "start from ", iter_last + 1
    for i in xrange(iter_last + 1, pars['Max_iter'] + 1):
        vol_ins, lbl_outs, msks = smp_trn.get_random_sample()

        # forward pass
        vol_ins = utils.make_continuous(vol_ins, dtype=pars['dtype'])

        props = net.forward(vol_ins)

        # cost function and accumulate errors
        props, cerr, grdts = pars['cost_fn'](props, lbl_outs)
        err = err + cerr
        cls = cls + cost_fn.get_cls(props, lbl_outs)

        # mask process the gradient
        grdts = utils.dict_mul(grdts, msks)

        # run backward pass
        grdts = utils.make_continuous(grdts, dtype=pars['dtype'])
        net.backward(grdts)

        if pars['is_malis']:
            malis_weights = cost_fn.malis_weight(props, lbl_outs)
            grdts = utils.dict_mul(grdts, malis_weights)

        if i % pars['Num_iter_per_test'] == 0:
            # test the net
            lc = test.znn_test(net, pars, smp_tst, vn, i, lc)

        if i % pars['Num_iter_per_show'] == 0:
            # anneal factor
            eta = eta * pars['anneal_factor']
            net.set_eta(eta)
            # normalize
            err = err / vn / pars['Num_iter_per_show']
            cls = cls / vn / pars['Num_iter_per_show']
            lc.append_train(i, err, cls)

            # time
            elapsed = time.time() - start
            elapsed = elapsed / pars['Num_iter_per_show']

            show_string = "iteration %d,    err: %.3f,    cls: %.3f,   elapsed: %.1f s/iter, learning rate: %.6f"\
                    %(i, err, cls, elapsed, eta )

            if pars.has_key('logging') and pars['logging']:
                utils.write_to_log(logfile, show_string)
            print show_string

            if pars['is_visual']:
                # show results To-do: run in a separate thread
                front_end.inter_show(start, lc, eta, vol_ins, props, lbl_outs,
                                     grdts, pars)
                if pars['is_rebalance'] and 'aff' not in pars['out_type']:
                    plt.subplot(247)
                    plt.imshow(msks.values()[0][0, 0, :, :],
                               interpolation='nearest',
                               cmap='gray')
                    plt.xlabel('rebalance weight')
                if pars['is_malis']:
                    plt.subplot(248)
                    plt.imshow(malis_weights.values()[0][0, 0, :, :],
                               interpolation='nearest',
                               cmap='gray')
                    plt.xlabel('malis weight (log)')
                plt.pause(2)
                plt.show()
            # reset err and cls
            err = 0
            cls = 0
            # reset time
            start = time.time()

        if i % pars['Num_iter_per_save'] == 0:
            # save network
            netio.save_network(net, pars['train_save_net'], num_iters=i)
            lc.save(pars, elapsed)