def main(): args = _get_parser().parse_args() args.device_ids = list(map(int, args.device_ids.split(','))) set_seed(args) sanity_checks(args) init_gpu_params(args) tokenizer = Tokenizer( os.path.join(args.bert_model, "senti_vocab.txt"), os.path.join(args.bert_model, "RoBERTa_Sentiment_kor")) train_dataset = NSMCDataSet(data_split="train", tokenizer=tokenizer, max_seq_length=args.max_seq_length, pad_to_max=args.pad_to_max) train_sampler = RandomSampler( train_dataset) if not args.multi_gpu else DistributedSampler( train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.per_gpu_train_batch_size, collate_fn=train_dataset.collate_fn) model = RobertaForSequenceClassification( classifier_dropout=args.classifier_dropout, bert_model_dir=args.bert_model, pre_trained_model=args.pretrained_bert_model) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0 }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) t_total = len(train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs warmup_steps = math.ceil(t_total * args.warmup_proportion) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) model.zero_grad() model.cuda() if args.multi_gpu: model = DistributedDataParallel( model, device_ids=[args.device_ids[args.local_rank]], output_device=args.device_ids[args.local_rank]) if args.is_master: logger.info(json.dumps(vars(args), indent=4)) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.per_gpu_train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.multi_gpu else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_steps = 0 for epoch in range(args.num_train_epochs): if args.multi_gpu: train_sampler.set_epoch(epoch) loss_bce = nn.BCEWithLogitsLoss() iter_loss = 0 model.train() pbar = tqdm(train_dataloader, desc="Iter", disable=not args.is_master) for step, batch in enumerate(pbar): input_ids, attention_mask, labels = batch inputs = { "input_ids": torch.tensor(input_ids, dtype=torch.long).cuda(), "attention_mask": torch.tensor(attention_mask, dtype=torch.long).cuda() } logits = model(**inputs) labels = torch.tensor(labels, dtype=torch.float).cuda() loss = loss_bce(input=logits.view(-1), target=labels.view(-1)) if args.gradient_accumulation_steps > 1: loss /= args.gradient_accumulation_steps loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: if args.max_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() optimizer.zero_grad() scheduler.step() global_steps += 1 if global_steps % args.save_checkpoints_steps == 0 and args.is_master: model_to_save = model.module if hasattr( model, 'module') else model save_path = os.path.join(args.save_checkpoints_dir, f"step_{global_steps}.ckpt") torch.save(model_to_save.state_dict(), save_path) iter_loss += loss.item() pbar.set_postfix({ "epoch": epoch, "global_steps": global_steps, "learning_rate": f"{scheduler.get_last_lr()[0]:.10f}", "avg_iter_loss": f"{iter_loss / (step + 1) * args.gradient_accumulation_steps:.5f}", "last_loss": f"{loss.item() * args.gradient_accumulation_steps:.5f}" }) pbar.close() if args.is_master: model_to_save = model.module if hasattr(model, 'module') else model save_path = os.path.join(args.save_checkpoints_dir, f"epoch_{epoch+1}.ckpt") torch.save(model_to_save.state_dict(), save_path)
def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)") parser.add_argument( "--data_file", type=str, required=True, help= "The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", ) parser.add_argument( "--student_type", type=str, choices=["distilbert", "roberta", "gpt2"], required=True, help="The student type (DistilBERT, RoBERTa).", ) parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.") parser.add_argument("--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint.") parser.add_argument("--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa).") parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.") parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0.") parser.add_argument( "--alpha_mlm", default=0.0, type=float, help= "Linear weight for the MLM loss. Must be >=0. Should be used in coonjunction with `mlm` flag.", ) parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0.") parser.add_argument( "--mlm", action="store_true", help= "The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.") parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.", ) parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help= "Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", ) parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.") parser.add_argument( "--restrict_ce_to_mask", action="store_true", help= "If true, compute the distilation loss only the [MLM] prediction distribution.", ) parser.add_argument( "--freeze_pos_embs", action="store_true", help= "Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", ) parser.add_argument( "--freeze_token_type_embds", action="store_true", help= "Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--group_by_size", action="store_false", help= "If true, group sequences that have similar length into the same batch. Default is true.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.", ) parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( "--fp16", action="store_true", help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() sanity_checks(args) # ARGS # init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it" "Use `--force` if you want to overwrite it") else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info( f"Experiment will be dumped and logged in {args.dump_path}") # SAVE PARAMS # logger.info(f"Param: {args}") with open(os.path.join(args.dump_path, "parameters.json"), "w") as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) student_config_class, student_model_class, _ = MODEL_CLASSES[ args.student_type] teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[ args.teacher_type] # TOKENIZER # tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}") args.special_tok_ids = special_tok_ids args.max_model_input_size = tokenizer.max_model_input_sizes[ args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}") with open(args.data_file, "rb") as fp: data = pickle.load(fp) if args.mlm: logger.info( f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts, "rb") as fp: counts = pickle.load(fp) token_probs = np.maximum(counts, 1)**-args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0.0 # do not predict special tokens token_probs = torch.from_numpy(token_probs) else: token_probs = None train_lm_seq_dataset = LmSeqsDataset(params=args, data=data) logger.info(f"Data loader created.") # STUDENT # logger.info(f"Loading student config from {args.student_config}") stu_architecture_config = student_config_class.from_pretrained( args.student_config) stu_architecture_config.output_hidden_states = True if args.student_pretrained_weights is not None: logger.info( f"Loading pretrained weights from {args.student_pretrained_weights}" ) student = student_model_class.from_pretrained( args.student_pretrained_weights, config=stu_architecture_config) else: student = student_model_class(stu_architecture_config) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}") logger.info(f"Student loaded.") # TEACHER # teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}") logger.info(f"Teacher loaded from {args.teacher_name}.") # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(student, args) if args.freeze_token_type_embds: freeze_token_type_embeddings(student, args) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() distiller = Distiller(params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher) distiller.train() logger.info("Let's go get some drinks.")
def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)") parser.add_argument( "--data_file", type=str, required=True, help= "The binarized file (tokenized + tokens_to_ids) and grouped by sequence." ) parser.add_argument("--token_counts", type=str, required=True, help="The token counts in the data_file for MLM.") parser.add_argument("--force", action='store_true', help="Overwrite dump_path if it already exists.") parser.add_argument("--vocab_size", default=30522, type=int, help="The vocabulary size.") parser.add_argument( "--max_position_embeddings", default=512, type=int, help="Maximum sequence length we can model (including [CLS] and [SEP])." ) parser.add_argument( "--sinusoidal_pos_embds", action='store_false', help= "If true, the position embeddings are simply fixed with sinusoidal embeddings." ) parser.add_argument("--n_layers", default=6, type=int, help="Number of Transformer blocks.") parser.add_argument("--n_heads", default=12, type=int, help="Number of heads in the self-attention module.") parser.add_argument( "--dim", default=768, type=int, help="Dimension through the network. Must be divisible by n_heads") parser.add_argument("--hidden_dim", default=3072, type=int, help="Intermediate dimension in the FFN.") parser.add_argument("--dropout", default=0.1, type=float, help="Dropout.") parser.add_argument("--attention_dropout", default=0.1, type=float, help="Dropout in self-attention.") parser.add_argument("--activation", default='gelu', type=str, help="Activation to use in self-attention") parser.add_argument( "--tie_weights_", action='store_false', help= "If true, we tie the embeddings matrix with the projection over the vocabulary matrix. Default is true." ) parser.add_argument("--from_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint.") parser.add_argument( "--from_pretrained_config", default=None, type=str, help="Load student initialization architecture config.") parser.add_argument("--teacher_type", default="bert", choices=["bert", "roberta"], help="Teacher type (BERT, RoBERTa).") parser.add_argument("--teacher_name", default="bert-base-uncased", type=str, help="The teacher model.") parser.add_argument("--temperature", default=2., type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0.") parser.add_argument("--alpha_mlm", default=0.5, type=float, help="Linear weight for the MLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0.") parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.") parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help= "Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." ) parser.add_argument( "--restrict_ce_to_mask", action='store_true', help= "If true, compute the distilation loss only the [MLM] prediction distribution." ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--tokens_per_batch", type=int, default=-1, help= "If specified, modify the batches so that they have approximately this number of tokens." ) parser.add_argument( "--shuffle", action='store_false', help="If true, shuffle the sequence order. Default is true.") parser.add_argument( "--group_by_size", action='store_false', help= "If true, group sequences that have similar length into the same batch. Default is true." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.") parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() ## ARGS ## init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it' 'Use `--force` if you want to overwrite it') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info( f'Experiment will be dumped and logged in {args.dump_path}') ### SAVE PARAMS ### logger.info(f'Param: {args}') with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) assert (args.from_pretrained_weights is None and args.from_pretrained_config is None) or \ (args.from_pretrained_weights is not None and args.from_pretrained_config is not None) ### TOKENIZER ### if args.teacher_type == 'bert': tokenizer = BertTokenizer.from_pretrained(args.teacher_name) elif args.teacher_type == 'roberta': tokenizer = RobertaTokenizer.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}') args.special_tok_ids = special_tok_ids ## DATA LOADER ## logger.info(f'Loading data from {args.data_file}') with open(args.data_file, 'rb') as fp: data = pickle.load(fp) assert os.path.isfile(args.token_counts) logger.info( f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts, 'rb') as fp: counts = pickle.load(fp) assert len(counts) == args.vocab_size token_probs = np.maximum(counts, 1)**-args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0. # do not predict special tokens token_probs = torch.from_numpy(token_probs) train_dataloader = Dataset(params=args, data=data) logger.info(f'Data loader created.') ## STUDENT ## if args.from_pretrained_weights is not None: assert os.path.isfile(args.from_pretrained_weights) assert os.path.isfile(args.from_pretrained_config) logger.info( f'Loading pretrained weights from {args.from_pretrained_weights}') logger.info( f'Loading pretrained config from {args.from_pretrained_config}') stu_architecture_config = DistilBertConfig.from_json_file( args.from_pretrained_config) stu_architecture_config.output_hidden_states = True student = DistilBertForMaskedLM.from_pretrained( args.from_pretrained_weights, config=stu_architecture_config) else: args.vocab_size_or_config_json_file = args.vocab_size stu_architecture_config = DistilBertConfig(**vars(args), output_hidden_states=True) student = DistilBertForMaskedLM(stu_architecture_config) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}') logger.info(f'Student loaded.') ## TEACHER ## if args.teacher_type == 'bert': teacher = BertForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) elif args.teacher_type == 'roberta': teacher = RobertaForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}') logger.info(f'Teacher loaded from {args.teacher_name}.') ## DISTILLER ## torch.cuda.empty_cache() distiller = Distiller(params=args, dataloader=train_dataloader, token_probs=token_probs, student=student, teacher=teacher) distiller.train() logger.info("Let's go get some drinks.")