Exemple #1
0
def evaluate(model, criterion, eval_dataloader, is_aux=False):
    model.eval()
    eval_loss = 0
    eval_acc = 0
    eval_acc_cls = 0
    eval_mean_iu = 0
    eval_fwavacc = 0

    for (val_img, val_label) in eval_dataloader:
        val_img = val_img.cuda()
        val_label = val_label.cuda()
        # forward
        if is_aux is True:
            aux_out1, aux_out2, main_out = model(val_img)
        else:
            main_out = model(val_img)
        val_loss = criterion(main_out, val_label)
        eval_loss += val_loss.item()

        label_pred = main_out.max(dim=1)[1].data.cpu().numpy()
        label_true = val_label.data.cpu().numpy()
        for lbt, lbp in zip(label_true, label_pred):
            acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(
                lbt, lbp, config.num_class)
            eval_acc += acc
            eval_acc_cls += acc_cls
            eval_mean_iu += mean_iu
            eval_fwavacc += fwavacc

    return eval_loss, eval_acc, eval_mean_iu
    def train_epoch(self):
        self.model.train()

        for batch_idx, (data, target) in enumerate(self.train_loader):

            score, loss, lbl_pred, lbl_true = self.forward(data, target)

            self.optim.zero_grad()
            loss.backward()            
            self.optim.step()

            print("Seenmask Train Epoch {:<5} | Iteration {:<5} | Loss {:5.5f} | seenmask_score grad sum {:7.8f} | seenmask_upscore grad sum {:7.8f} | score sum {:10.5f}".format(
                int(self.epoch), int(batch_idx), float(loss.data[0]), float(self.model.seenmask_score.weight.grad.sum().data[0]),
                float(self.model.seenmask_upscore.weight.grad.sum().data[0]), float(score.sum().data[0])))

            metrics = utils.label_accuracy_score(lbl_true.numpy(), lbl_pred, self.n_class)

            with open(osp.join(self.log_dir, 'seenmask_train_log.csv'), 'a') as f:
                elapsed_time = (datetime.datetime.now(pytz.timezone('US/Eastern')) - self.timestamp_start).total_seconds()
                log = [self.epoch, self.iteration] + [loss.data[0]] + list(metrics) + [elapsed_time]
                log = map(str, log)
                f.write(','.join(log) + '\n')

            # write to tensorboard
            self.tb_writer.add_scalar('seenmask/train/loss', loss.data[0], self.iteration)
            self.tb_writer.add_scalar('seenmask/train/pxl_acc', metrics[0], self.iteration)
            self.tb_writer.add_scalar('seenmask/train/class_acc', metrics[1], self.iteration)
            self.tb_writer.add_scalar('seenmask/train/mean_iu', metrics[2], self.iteration)
            self.tb_writer.add_scalar('seenmask/train/fwavacc', metrics[3], self.iteration)

            self.iteration += 1
Exemple #3
0
    def validation(epoch, model, data_loader, criterion, device):
        print('Start validation fold{} #{}'.format(fold + 1, epoch))
        model.eval()
        with torch.no_grad():
            total_loss = 0
            cnt = 0
            mIoU_list = []
            for step, (images, masks, _) in enumerate(data_loader):

                images = torch.stack(images)  # (batch, channel, height, width)
                masks = torch.stack(
                    masks).long()  # (batch, channel, height, width)

                images, masks = images.to(device), masks.to(device)

                outputs = model(images)
                loss = criterion(outputs, masks)
                total_loss += loss
                cnt += 1

                outputs = torch.argmax(outputs.squeeze(),
                                       dim=1).detach().cpu().numpy()

                mIoUs = label_accuracy_score(masks.detach().cpu().numpy(),
                                             outputs,
                                             n_class=12)
                mIoU_list += mIoUs
            avrg_loss = total_loss / cnt
            print(
                'Validation {} #{}  Average Loss: {:.4f}, mIoU: {:.4f}'.format(
                    fold + 1, epoch, avrg_loss, np.mean(mIoU_list)))

        return np.mean(mIoU_list)
Exemple #4
0
    def _get_loss_gen(self):
        batchsize = self.y_fake.data.shape[0]
        L_mce = F.softmax_cross_entropy(self.pred_label_map,
                                        self.ground_truth,
                                        normalize=False)
        L_bce = F.softmax_cross_entropy(
            self.y_fake,
            Variable(self.xp.ones(batchsize, dtype=self.xp.int32),
                     volatile=not self.gen.train))
        loss = L_mce + self.L_bce_weight * L_bce

        # log report
        label_true = chainer.cuda.to_cpu(self.ground_truth.data)
        label_pred = chainer.cuda.to_cpu(
            self.pred_label_map.data).argmax(axis=1)
        logs = []
        for i in six.moves.range(batchsize):
            acc, acc_cls, iu, fwavacc = utils.label_accuracy_score(
                label_true[i], label_pred[i], self.n_class)
            logs.append((acc, acc_cls, iu, fwavacc))
        log = np.array(logs).mean(axis=0)
        values = {
            'loss': loss,
            'accuracy': log[0],
            'accuracy_cls': log[1],
            'iu': log[2],
            'fwavacc': log[3],
        }
        chainer.report(values, self.gen)

        return loss
Exemple #5
0
def val(net,val_loader,viz,criterion,iteration = None):
    '''
    validation our model is well?
    '''
    training = net.training
    #eval mode for drop 
    device =  torch.device("cuda:0")
    net.eval()
    val_true_win = 'val_true_image'
    label_name = val_loader.dataset.class_names
    val_loss =0.0
    label_trues = []
    label_preds = []
    for batch_idx,(data,target) in tqdm.tqdm(enumerate(val_loader,1),total = len(val_loader),desc='Validation iteration {}'.format(iteration),ncols=80,leave = False):
        data = data.to(device)
        target = target.to(device)
        scores = net(data)
        with torch.set_grad_enabled(False):
            loss =criterion(scores,target)
        val_loss +=loss.item()

        imgs =data.detach().cpu().numpy()
        #get the idx value for which labels?
        lbl_pred = scores.max(1)[1].cpu().numpy()[:,:,:]
        lbl_true  = target.detach().cpu().numpy()
        label_trues.append(lbl_true)
        label_preds.append(lbl_pred)
    acc, acc_cls, mean_iu, fwavacc = utils.label_accuracy_score(label_trues,label_preds,21)

    loss  = val_loss/len(val_loader) 
    net.train() 
    return loss,acc,acc_cls,mean_iu,fwavacc
Exemple #6
0
def val(model, dataloader):
    model.eval()
    eval_acc = 0
    eval_acc_cls = 0
    eval_mean_iu = 0
    eval_fwavacc = 0
    li_pred = []
    li_gt = []
    for i, (_, im, cloud, theta, shift, lb) in enumerate(dataloader):
        im, cloud, theta, shift, lb = Variable(im), Variable(cloud), Variable(theta), Variable(shift), Variable(lb)
        im, cloud, theta, shift, lb = im.float().cuda(), cloud.float().cuda(), theta.float().cuda(), shift.float().cuda(), lb.long().cuda()
        _, pred = model(im, cloud, theta, shift)
        # Mean IoU
        label_true = lb.data.cpu().numpy().astype(np.int8)
        label_pred = pred.data.cpu().numpy().squeeze(0)
        label_pred = (label_pred > 0.5).astype(np.int8)
        for (label, prob) in zip(label_true, label_pred):
            acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(label, prob, n_class=2)
            eval_acc += acc
            eval_acc_cls += acc_cls
            eval_mean_iu += mean_iu
            eval_fwavacc += fwavacc
        # MaxF
        label_pred = pred.data.cpu().numpy().squeeze()
        label_true = lb.data.cpu().numpy().squeeze()
        li_pred.append(label_pred)
        li_gt.append(label_true)
    print 'Validation ======ACC: %lf,Mean IoU: %lf======' % (eval_acc/dataloader.__len__(),
                                                             eval_mean_iu/dataloader.__len__())
    max_f = eval_road(li_pred, li_gt)
    model.train()
    return max_f
Exemple #7
0
    def train_epoch(self):
        self.model.train()
        
        if self.epoch % 20 == 0 and self.epoch != 0:
            for param_group in self.optim.param_groups:
                param_group['lr'] = self.initlr * 0.1
            self.initlr = self.initlr * 0.1
            print('current learning rate is ')
            print(self.initlr)
             
        n_class = len(self.train_loader.dataset.class_names)

        for batch_idx, (data, target) in tqdm.tqdm(
                enumerate(self.train_loader), total=len(self.train_loader),
                desc='Train epoch=%d' % self.epoch, ncols=80, leave=False):
            iteration = batch_idx + self.epoch * len(self.train_loader)
            #print('shape of validate data is ',data.shape)
            if self.iteration != 0 and (iteration - 1) != self.iteration:
                continue  # for resuming
            self.iteration = iteration

            if self.iteration % self.interval_validate == 0:
                self.validate()

            if self.cuda:
                data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            self.optim.zero_grad()
            score = self.model(data)

            loss = cross_entropy2d(score, target,
                                   size_average=self.size_average)
            
            loss.backward()
            self.optim.step()

            metrics = []
            lbl_pred = score.data.max(1)[1].cpu().numpy()[:, :, :]
            lbl_true = target.data.cpu().numpy()
            for lt, lp in zip(lbl_true, lbl_pred):
                acc, acc_cls, mean_iu, fwavacc = \
                    utils.label_accuracy_score(
                        [lt], [lp], n_class=n_class)
                metrics.append((acc, acc_cls, mean_iu, fwavacc))
            metrics = np.mean(metrics, axis=0)

            with open(osp.join(self.out, 'log.csv'), 'a') as f:
                elapsed_time = (
                    datetime.datetime.now(pytz.timezone('Asia/Shanghai')) -
                    self.timestamp_start).total_seconds()
                log = [self.epoch, self.iteration] + [loss.data[0]] + \
                    metrics.tolist() + [''] * 5 + [elapsed_time]
                log = map(str, log)
                f.write(','.join(log) + '\n')
                
            if self.iteration >= self.max_iter:
                break
Exemple #8
0
def eval_on_validation():
    if not os.path.exists(config.run_dir):
        os.mkdir(config.run_dir)
    model = getattr(models, config.model)()
    model = torch.nn.DataParallel(model)    # multi-gpu
    model.cuda()
    print 'test on validation set.', config.model
    print model
    if config.load_model_path:
        model.load_state_dict(torch.load(config.load_model_path))
    # data
    test_data = KITTIRoadFusion(config.root, split='val', num_features=19)
    test_dataloader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)
    # test
    model.eval()
    eval_acc = 0
    eval_acc_cls = 0
    eval_mean_iu = 0
    eval_fwavacc = 0
    li_pred = []
    li_gt = []
    total_time = 0
    for i, (name, im, cloud, theta, shift,  lb) in enumerate(test_dataloader):
        im, cloud, theta, shift, lb = Variable(im), Variable(cloud), Variable(theta), Variable(shift), Variable(lb)
        im, cloud, theta, shift, lb = im.float().cuda(), cloud.float().cuda(), theta.float().cuda(), shift.float().cuda(), lb.long().cuda()
        start = time.clock()
        _, pred = model(im, cloud, theta, shift)  # inference
        end = time.clock()
        total_time += (end-start)
        # pred = F.upsample_bilinear(pred, scale_factor=4)
        # save image
        label_pred = pred.data.cpu().numpy().squeeze()
        label_pred = np.array(label_pred*255, dtype=np.uint8)
        filename = os.path.join(config.run_dir, name[0])
        print filename
        # cv2.imwrite(filename, label_pred)
        # Mean IoU
        label_true = lb.data.cpu().numpy().astype(np.int8)
        label_pred = pred.data.cpu().numpy().squeeze(0)
        label_pred = (label_pred > 0.5).astype(np.int8)
        for (label, prob) in zip(label_true, label_pred):
            acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(label, prob, n_class=2)
            eval_acc += acc
            eval_acc_cls += acc_cls
            eval_mean_iu += mean_iu
            eval_fwavacc += fwavacc
        # MaxF
        label_pred = pred.data.cpu().numpy().squeeze()
        label_true = lb.data.cpu().numpy().squeeze()
        li_pred.append(label_pred)
        li_gt.append(label_true)

    print 'Runtime ############# time(s) : %f ##########' % (total_time / test_dataloader.__len__())
    print 'Validation ======ACC: %lf,Mean IoU: %lf======' % (eval_acc / test_dataloader.__len__(),
                                                             eval_mean_iu / test_dataloader.__len__())
    eval_road(li_pred, li_gt)
Exemple #9
0
def train(num_epochs, model, data_loader, val_loader, val_every, device, file_name):
    learning_rate = 0.0001
    from torch.optim.swa_utils import AveragedModel, SWALR
    from torch.optim.lr_scheduler import CosineAnnealingLR
    from segmentation_models_pytorch.losses import SoftCrossEntropyLoss, JaccardLoss
    from adamp import AdamP

    criterion = [SoftCrossEntropyLoss(smooth_factor=0.1), JaccardLoss('multiclass', classes=12)]
    optimizer = AdamP(params=model.parameters(), lr=learning_rate, weight_decay=1e-6)
    swa_scheduler = SWALR(optimizer, swa_lr=learning_rate)
    swa_model = AveragedModel(model)
    look = Lookahead(optimizer, la_alpha=0.5)

    print('Start training..')
    best_miou = 0
    for epoch in range(num_epochs):
        hist = np.zeros((12, 12))
        model.train()
        for step, (images, masks, _) in enumerate(data_loader):
            loss = 0
            images = torch.stack(images)  # (batch, channel, height, width)
            masks = torch.stack(masks).long()  # (batch, channel, height, width)

            # gpu 연산을 위해 device 할당
            images, masks = images.to(device), masks.to(device)

            # inference
            outputs = model(images)
            for i in criterion:
                loss += i(outputs, masks)
            # loss 계산 (cross entropy loss)

            look.zero_grad()
            loss.backward()
            look.step()

            outputs = torch.argmax(outputs.squeeze(), dim=1).detach().cpu().numpy()
            hist = add_hist(hist, masks.detach().cpu().numpy(), outputs, n_class=12)
            acc, acc_cls, mIoU, fwavacc = label_accuracy_score(hist)
            # step 주기에 따른 loss, mIoU 출력
            if (step + 1) % 25 == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, mIoU: {:.4f}'.format(
                    epoch + 1, num_epochs, step + 1, len(data_loader), loss.item(), mIoU))

        # validation 주기에 따른 loss 출력 및 best model 저장
        if (epoch + 1) % val_every == 0:
            avrg_loss, val_miou = validation(epoch + 1, model, val_loader, criterion, device)
            if val_miou > best_miou:
                print('Best performance at epoch: {}'.format(epoch + 1))
                print('Save model in', saved_dir)
                best_miou = val_miou
                save_model(model, file_name = file_name)

        if epoch > 3:
            swa_model.update_parameters(model)
            swa_scheduler.step()
Exemple #10
0
def func_eval(model, criterion, val_dataset, val_loader, post_crf=False):
    print("Start validation.\n")
    model.eval()  # make model evaluation mode

    with torch.no_grad():
        n_class = 12
        total_loss_sum = 0
        mIoU_list = []
        hist = np.zeros((n_class, n_class))  # confusion matrix

        for step, (images, masks, img_info) in enumerate(val_loader):
            images = torch.stack(images).to(
                CFG.device)  # (batch, channel, height, width)
            masks = torch.stack(masks).long().to(
                CFG.device)  # (batch, channel, height, width)

            # forward pass (get logits)
            logits = model(images)

            # loss 계산 (cross entropy loss)
            loss = criterion(logits, masks)
            total_loss_sum += loss.item() * images.shape[0]

            # use softmax to get probability
            probs = F.softmax(logits, dim=1)
            probs = probs.data.cpu().numpy()

            # Postprocessing
            if post_crf:
                pool = mp.Pool(mp.cpu_count())
                images = images.data.cpu().numpy().astype(np.uint8).transpose(
                    0, 2, 3, 1)
                probs = pool.map(dense_crf_wrapper, zip(images, probs))
                pool.close()

            # get class index which has biggest probability
            preds = np.argmax(probs, axis=1)
            masks = masks.detach().cpu().numpy()

            hist = add_hist(hist, masks, preds, n_class=n_class)

            if step == 0:
                fig_mask = log_images(masks, preds, img_info)

            del images, masks, logits, probs, preds

        val_loss = total_loss_sum / len(val_dataset)

    acc, acc_cls, mIoU, iu, fwavacc = label_accuracy_score(hist)
    recycle = [
        'Background', 'UNKNOWN', 'General trash', 'Paper', 'Paper pack',
        'Metal', 'Glass', 'Plastic', 'Styrofoam', 'Plastic bag', 'Battery',
        'Clothing'
    ]
    mIoU_df = pd.DataFrame({'Recycle Type': recycle, 'IoU': iu})
    return val_loss, acc, mIoU, mIoU_df, fig_mask
Exemple #11
0
    def validate(self):
        training = self.model.training
        self.model.eval()

        n_class = len(self.val_loader.dataset.class_names)

        val_loss = 0
        visualizations = []
        label_trues, label_preds = [], []
        with torch.no_grad():
            for batch_idx, (data, target) in tqdm.tqdm(
                    enumerate(self.val_loader),
                    total=len(self.val_loader),
                    desc='Valid iteration=%d' % self.iteration,
                    ncols=80,
                    leave=False):
                if self.cuda:
                    data, target = data.to('cuda'), target.to('cuda')
                score = self.model(data)

                loss = cross_entropy2d(score,
                                       target,
                                       size_average=self.size_average)
                if np.isnan(float(loss.item())):
                    raise ValueError('loss is nan while validating')
                val_loss += float(loss.item()) / len(data)

                imgs = data.data.cpu()

                lbl_pred = score.data.max(1)[1].cpu().numpy()[:, :, :]
                lbl_true = target.data.cpu()
                for img, lt, lp in zip(imgs, lbl_true, lbl_pred):
                    img, lt = self.val_loader.dataset.untransform(img, lt)
                    label_trues.append(lt)
                    label_preds.append(lp)
                    if len(visualizations) < 9:
                        viz = fcn.utils.visualize_segmentation(lbl_pred=lp,
                                                               lbl_true=lt,
                                                               img=img,
                                                               n_class=n_class)
                        visualizations.append(viz)
        metrics = utils.label_accuracy_score(label_trues, label_preds, n_class)

        print(label_trues)
        print(label_preds)
        val_loss /= len(self.val_loader)

        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        print('acc, acc_cls, mean_iu, fwavacc')
        print('acc:', metrics[0])
        print('acc_cls:', metrics[1])
        print('mean_iu:', metrics[2])
        print('fwavacc:', metrics[3])
        return label_trues, label_preds, n_class
Exemple #12
0
    def train_epoch(self):
        self.model.train()

        n_class = len(self.train_loader.dataset.class_names)

        for batch_idx, (data, target) in tqdm.tqdm(
                enumerate(self.train_loader),
                total=len(self.train_loader),
                desc='Train epoch=%d' % self.epoch,
                ncols=80,
                leave=False):
            iteration = batch_idx + self.epoch * len(self.train_loader)
            if self.iteration != 0 and (iteration - 1) != self.iteration:
                continue  # for resuming
            self.iteration = iteration

            if self.iteration % self.interval_validate == 0:
                self.validate()

            assert self.model.training

            if self.cuda:
                data, target = data.to('cuda'), target.to('cuda')
            self.optim.zero_grad()
            score = self.model(data)

            loss = cross_entropy2d(score,
                                   target,
                                   size_average=self.size_average)
            loss /= len(data)
            if np.isnan(float(loss.item())):
                raise ValueError('loss is nan while training')
            loss.backward()
            self.optim.step()

            metrics = []
            lbl_pred = score.data.max(1)[1].cpu().numpy()[:, :, :]
            lbl_true = target.data.cpu().numpy()
            acc, acc_cls, mean_iu, fwavacc = \
                utils.label_accuracy_score(
                    lbl_true, lbl_pred, n_class=n_class)
            metrics.append((acc, acc_cls, mean_iu, fwavacc))
            metrics = np.mean(metrics, axis=0)

            with open(osp.join(self.out, 'log.csv'), 'a') as f:
                elapsed_time = (
                    datetime.datetime.now(pytz.timezone('America/Bogota')) -
                    self.timestamp_start).total_seconds()
                log = [self.epoch, self.iteration] + [loss.item()] + \
                    metrics.tolist() + [''] * 5 + [elapsed_time]
                log = map(str, log)
                f.write(','.join(log) + '\n')

            if self.iteration >= self.max_iter:
                break
Exemple #13
0
def eval_on_validation_bev():
    if not os.path.exists(config.run_dir):
        os.mkdir(config.run_dir)
    model = getattr(models, config.model)()
    model = torch.nn.DataParallel(model)  # multi-gpu
    model.cuda()
    print 'test on validation set.', config.model
    print model
    if config.load_model_path:
        model.load_state_dict(torch.load(config.load_model_path))
    # data
    bev = BirdsEyeView()
    test_data = KITTIRoadFusion(config.root, split='val', num_features=19, return_bev=True)
    test_dataloader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)
    # test
    model.eval()
    eval_acc = 0
    eval_acc_cls = 0
    eval_mean_iu = 0
    eval_fwavacc = 0
    li_pred = []
    li_gt = []
    for i, (name, im, cloud, theta, shift, _, lb) in enumerate(test_dataloader):
        im, cloud, theta, shift, lb = Variable(im), Variable(cloud), Variable(theta), Variable(shift), Variable(lb)
        im, cloud, theta, shift, lb = im.float().cuda(), cloud.float().cuda(), theta.float().cuda(), shift.float().cuda(), lb.long().cuda()
        _, pred = model(im, cloud, theta, shift)  # inference

        pred = pred.data.cpu().numpy().squeeze()
        theta = theta.data.cpu().numpy().squeeze()
        shift = shift.data.cpu().numpy().squeeze()

        label_pred = bev.transformLable2BEV((pred*255).astype(np.uint8), theta, shift)
        label_true = lb.data.cpu().numpy().squeeze()

        # save image
        filename = os.path.join(config.run_dir, name[0])
        print filename
        cv2.imwrite(filename, label_pred)

        label_pred = label_pred/255.
        # Mean IoU
        label_true_hard = np.expand_dims(label_true.astype(np.int8), axis=0)
        label_pred_hard = np.expand_dims((label_pred > 0.5).astype(np.int8), axis=0)
        for (label, prob) in zip(label_true_hard, label_pred_hard):
            acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(label, prob, n_class=2)
            eval_acc += acc
            eval_acc_cls += acc_cls
            eval_mean_iu += mean_iu
            eval_fwavacc += fwavacc
        # MaxF
        li_pred.append(label_pred)
        li_gt.append(label_true)
    print 'Validation ======ACC: %lf,Mean IoU: %lf======' % (eval_acc / test_dataloader.__len__(),
                                                             eval_mean_iu / test_dataloader.__len__())
    eval_road(li_pred, li_gt)
Exemple #14
0
def train(num_epochs, model, data_loader, val_loader, criterion, optimizer,
          saved_dir, val_every, device, file_name, n_class):
    print('Start training..')
    best_mIoU = 0
    for epoch in range(num_epochs):
        hist = np.zeros((n_class, n_class))
        model.train()
        for step, (images, masks, _) in enumerate(data_loader):
            # (batch, channel, height, width)
            images = torch.stack(images)
            # (batch, channel, height, width)
            masks = torch.stack(masks).long()

            # gpu 연산을 위해 device 할당
            images, masks = images.to(device), masks.to(device)

            # inference
            outputs = model(images)

            # loss 계산 (cross entropy loss)
            loss = criterion(outputs, masks)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            outputs = torch.argmax(outputs.squeeze(),
                                   dim=1).detach().cpu().numpy()
            hist = add_hist(hist,
                            masks.detach().cpu().numpy(),
                            outputs,
                            n_class=n_class)
            acc, acc_cls, mIoU, fwavacc = label_accuracy_score(hist)
            wandb.log({"loss": loss, "mIoU": mIoU})  # wandb 로그출력
            # step 주기에 따른 loss 출력
            if (step + 1) % 25 == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, mIoU:{:.4f}'.
                      format(epoch + 1, num_epochs, step + 1,
                             len(train_loader), loss.item(), mIoU))

        # validation 주기에 따른 loss 출력 및 best model 저장
        # mIoU에 따라 모델 저장
        if (epoch + 1) % val_every == 0:
            avrg_loss, val_mIoU = validation(epoch + 1, model, val_loader,
                                             criterion, device, n_class)
            if val_mIoU > best_mIoU:
                print('Best performance at epoch: {}'.format(epoch + 1))
                print('Save model in', saved_dir)
                best_mIoU = val_mIoU
                save_model(model, saved_dir, file_name)
            wandb.log({
                "val_loss": avrg_loss,
                "val_mIoU": val_mIoU,
                "best_mIoU": best_mIoU
            })
Exemple #15
0
 def eval_metric(self, score, target, n_class):
 # -----------------------------------------------------------------------------
     metrics = []
     lbl_pred = score.max(1)[1].cpu().numpy()[:, :, :]
     lbl_true = target.cpu().numpy()
     for lt, lp in zip(lbl_true, lbl_pred):
         acc, acc_cls, mean_iu, fwavacc = \
             utils.label_accuracy_score(
                 [lt], [lp], n_class=n_class)
         metrics.append((acc, acc_cls, mean_iu, fwavacc))
     metrics = np.mean(metrics, axis=0)
     return metrics
def train(epoch_idx, net, train_loader, lr, logger, n_class):
    net.cuda()
    net.train()

    base_params = list(map(id, net.base_net.parameters()))
    top_params = filter(lambda p: id(p) not in base_params, net.parameters())

    optimizer = torch.optim.SGD([{
        'params': top_params
    }, {
        'params': net.base_net.parameters(),
        'lr': lr * 0.1
    }],
                                lr=lr,
                                momentum=0.9,
                                weight_decay=0.00004)

    criterion = nn.CrossEntropyLoss(ignore_index=-1)

    len_batch = len(train_loader)

    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()

        score = net(data)
        loss = criterion(score, target)
        loss.backward()
        optimizer.step()

        _, predicted = score.max(1)
        predicted, target = to_np(predicted), to_np(target)
        acc, acc_cls, mean_iu = label_accuracy_score(target, predicted,
                                                     n_class)
        info = {
            'acc': acc,
            'acc_cls': acc_cls,
            'mean_iu': mean_iu,
            'loss': loss.data[0]
        }
        for tag, value in info.items():
            logger.scalar_summary(tag, value,
                                  len_batch * epoch_idx + batch_idx + 1)
        print(('train', batch_idx, epoch_idx))

    if (epoch_idx + 1) % 10 == 0:
        n = (epoch_idx + 1) / 10
        state = net.state_dict()
        torch.save(state, './deeplab_epoch_' + str(n) + '.pth')
def main():

    model = Deeplab()

    dataset = VOC2012ClassSeg('./dataset', split='train', transform=True)

    val_loader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=1,
                                             pin_memory=True)

    # n_class = len(dataset.class_names)

    # model_file = ''
    # moda_data = torch.load(model_file)
    # try:
    #   model.load_state_dict(model_data)
    # except Exception:
    #   model.load_state_dict(model_data['model_state_dict'])
    # if torch.cuda.is_available():
    #   model.cuda()

    model.eval()

    label_trues, label_preds = [], []

    for batch_idx, (data, target) in enumerate(val_loader):

        # if torch.cuda.is_available():
        #   data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        score = model(data)
        _, predicted = score.max(1)
        predicted = to_np(predicted)
        target = to_np(target)
        for lt, lp in zip(target, predicted):
            label_trues.append(lt)
            label_preds.append(lp)
        if batch_idx == 5:
            break
    n_class = 21
    print(len(label_preds))
    metrics = label_accuracy_score(label_trues, label_preds, n_class=n_class)
    metrics = np.array(metrics)
    metrics *= 100
    print(metrics)
Exemple #18
0
    def validate(self):
        self.netd.eval()
        self.netg.eval()
        self.nets.eval()

        progressbar = tqdm(self.valid_data_loader)
        for ii, (imgs, _) in enumerate(progressbar):
            normal, defect, target = imgs
            if self.opt.use_gpu:
                normal = normal.cuda()
                defect = defect.cuda()
                target = target.cuda()
            repair = self.netg(defect)
            if self.opt.with_segmentation:
                seg_input = torch.cat([defect, repair], dim=1)
                seg = self.nets(seg_input)
            else:
                seg = None

            if self.opt.with_segmentation:
                metrics = []
                lbl_pred = seg.data.max(1)[1].cpu().numpy()[:, :, :]
                lbl_true = target.data.cpu().numpy()
                acc, acc_cls, mean_iu, fwavacc = \
                    label_accuracy_score(
                        lbl_true, lbl_pred, n_class=2)
                metrics.append((acc, acc_cls, mean_iu, fwavacc))
                metrics = np.mean(metrics, axis=0)
                progressbar.set_description(
                    f'Acc: {metrics[0]:.5f}, Acc_cls: {metrics[1]:.5f}, MIU: {metrics[2]:.5f}, Fwavacc: {metrics[3]:.5f}'
                )
            if self.opt.debug:
                if not os.path.exists(self.opt.val_save_path):
                    os.makedirs(self.opt.val_save_path)

                imgs = torch.cat((defect, repair), 0)
                tv.utils.save_image(imgs,
                                    os.path.join(
                                        self.opt.val_save_path,
                                        '{}_defect_repair.jpg'.format(ii)),
                                    normalize=True,
                                    range=(-1, 1))
def validation(epoch, model, data_loader, criterion, device, n_class):
    print('Start validation #{}'.format(epoch))
    model.eval()
    with torch.no_grad():
        total_loss = 0
        cnt = 0
        mIoU_list = []
        hist = np.zeros((n_class, n_class))  # 중첩을위한 변수
        for step, (images, masks, _) in enumerate(data_loader):

            # (batch, channel, height, width)
            images = torch.stack(images)
            # (batch, channel, height, width)
            masks = torch.stack(masks).long()

            images, masks = images.to(device), masks.to(device)

            outputs = model(images)
            loss = criterion(outputs, masks)
            total_loss += loss
            cnt += 1

            outputs = torch.argmax(outputs.squeeze(),
                                   dim=1).detach().cpu().numpy()

            # 계산을 위한 중첩
            hist = add_hist(hist,
                            masks.detach().cpu().numpy(),
                            outputs,
                            n_class=n_class)

            # mIoU = label_accuracy_score(
            #     masks.detach().cpu().numpy(), outputs, n_class=12)[2]
            # mIoU_list.append(mIoU)

        # mIoU가 전체에대해 계산
        acc, acc_cls, mIoU, fwavacc = label_accuracy_score(hist)
        avrg_loss = total_loss / cnt
        print('Validation #{}  Average Loss: {:.4f}, mIoU: {:.4f}'.format(
            epoch, avrg_loss, mIoU))
    return avrg_loss, mIoU
Exemple #20
0
    def calc_loss(self):
        batchsize = self.ground_truth.shape[0]
        self.loss = F.softmax_cross_entropy(self.pred_label_map,
                                            self.ground_truth,
                                            normalize=False)

        # log report
        label_true = chainer.cuda.to_cpu(self.ground_truth.data)
        label_pred = chainer.cuda.to_cpu(
            self.pred_label_map.data).argmax(axis=1)
        logs = []
        for i in six.moves.range(batchsize):
            acc, acc_cls, iu, fwavacc = utils.label_accuracy_score(
                label_true[i], label_pred[i], self.n_class)
            logs.append((acc, acc_cls, iu, fwavacc))
        log = np.array(logs).mean(axis=0)
        values = {
            'loss': self.loss,
            'accuracy': log[0],
            'accuracy_cls': log[1],
            'iu': log[2],
            'fwavacc': log[3],
        }
        chainer.report(values, self.model)
def psudo_labeling(num_epochs, model, data_loader, val_loader,
                   unlabeled_loader, criterion, optimizer, device, n_class,
                   saved_dir, file_name, val_every):
    # Instead of using current epoch we use a "step" variable to calculate alpha_weight
    # This helps the model converge faster
    step = 100
    size = 256
    transform = A.Compose([A.Resize(256, 256)])
    preds_array = np.empty((0, size * size), dtype=np.long)
    file_name_list = []
    best_mIoU = 0
    model.train()
    for epoch in range(num_epochs):
        hist = np.zeros((n_class, n_class))
        for batch_idx, (imgs, image_infos) in enumerate(unlabeled_loader):

            # Forward Pass to get the pseudo labels
            # --------------------------------------------- test(unlabelse)를 모델에 통과
            model.eval()
            outs = model(torch.stack(imgs).to(device))
            oms = torch.argmax(outs.squeeze(), dim=1).detach().cpu().numpy()
            oms = torch.Tensor(oms)
            oms = oms.long()
            oms = oms.to(device)
            # --------------------------------------------- 학습

            model.train()
            # Now calculate the unlabeled loss using the pseudo label
            imgs = torch.stack(imgs)
            imgs = imgs.to(device)
            # preds_array = preds_array.to(device)

            output = model(imgs)

            unlabeled_loss = alpha_weight(step) * criterion(output, oms)

            # Backpropogate
            optimizer.zero_grad()
            unlabeled_loss.backward()
            optimizer.step()
            output = torch.argmax(output.squeeze(),
                                  dim=1).detach().cpu().numpy()
            hist = add_hist(hist,
                            oms.detach().cpu().numpy(),
                            output,
                            n_class=n_class)

            if (batch_idx + 1) % 25 == 0:
                acc, acc_cls, mIoU, fwavacc = label_accuracy_score(hist)
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, mIoU:{:.4f}'.
                      format(epoch + 1, num_epochs, batch_idx + 1,
                             len(unlabeled_loader), unlabeled_loss.item(),
                             mIoU))
            # For every 50 batches train one epoch on labeled data
            # 50배치마다 라벨데이터를 1 epoch학습
            if batch_idx % 50 == 0:

                # Normal training procedure
                for batch_idx, (images, masks, _) in enumerate(train_loader):
                    images = torch.stack(images)
                    # (batch, channel, height, width)
                    masks = torch.stack(masks).long()

                    # gpu 연산을 위해 device 할당
                    images, masks = images.to(device), masks.to(device)

                    output = model(images)
                    labeled_loss = criterion(output, masks)

                    optimizer.zero_grad()
                    labeled_loss.backward()
                    optimizer.step()

                # Now we increment step by 1
                step += 1

        if (epoch + 1) % val_every == 0:
            avrg_loss, val_mIoU = validation(epoch + 1, model, val_loader,
                                             criterion, device, n_class)
            if val_mIoU > best_mIoU:
                print('Best performance at epoch: {}'.format(epoch + 1))
                print('Save model in', saved_dir)
                best_mIoU = val_mIoU
                save_model(model, saved_dir, file_name)
            wandb.log({
                "val_loss": avrg_loss,
                "val_mIoU": val_mIoU,
                "best_mIoU": best_mIoU
            })

        model.train()
Exemple #22
0
    def validate(self):
        n_class = self.train_loader.dataset.n_class

        # os.system('play -nq -t alsa synth {} sine {}'.format(0.3, 440)) # sound an alarm

        val_loss = 0
        prec = 0
        metrics = np.zeros((len(self.val_loader), 4), dtype=np.float64)
        for batch_idx, (rgb_img, ddd_img,
                        target) in tqdm.tqdm(enumerate(self.val_loader),
                                             total=len(self.val_loader),
                                             desc='  val %d' % self.epoch,
                                             ncols=80,
                                             leave=False):

            ## validate
            with torch.no_grad():
                self.model.eval()
                if self.cuda:
                    rgb_img = rgb_img.cuda()
                    ddd_img = ddd_img.cuda()
                    target = target.cuda()

                output = self.model(rgb_img, ddd_img)
                if self.val_loader.dataset.encode_label:
                    output = F.interpolate(output,
                                           size=target.size()[2:],
                                           mode='bilinear',
                                           align_corners=False)
                else:
                    output = F.interpolate(output,
                                           size=target.size()[1:],
                                           mode='bilinear',
                                           align_corners=False)

                loss = self.criterion(output, target)
                loss_data = loss.data.item()

                if np.isnan(loss_data):
                    raise ValueError('loss is nan while validating')
                val_loss += loss_data / len(rgb_img)

            ## some stats
            lbl_pred = output.data.max(1)[1].cpu().numpy().squeeze()
            lbl_true = target.data.cpu().numpy().squeeze()
            prec += compute_precision(lbl_pred, lbl_true)
            m = label_accuracy_score(lbl_true, lbl_pred, n_class)
            metrics[batch_idx, :] = np.array(m)

        metrics = np.mean(metrics, axis=0)
        val_prec = prec / len(self.val_loader)

        with open(osp.join(self.output_path, 'log.csv'), 'a') as f:

            metrics_str = ['%.10f' % (a) for a in list(metrics)]
            elapsed_time = (
                datetime.datetime.now(pytz.timezone('Asia/Jakarta')) -
                self.timestamp_start).total_seconds()

            val_loss /= len(self.val_loader)
            log = [self.epoch, self.iteration] + [''] * 5 + \
                ['%.10f' %(val_loss)] + metrics_str + [elapsed_time]
            log = map(str, log)
            f.write(','.join(log) + '\n')

        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        if is_best:
            self.best_mean_iu = mean_iu
        is_prec_best = val_prec > self.best_prec
        if is_prec_best:
            self.best_prec = val_prec
        torch.save(
            {
                'epoch': self.epoch,
                'iteration': self.iteration,
                'arch': self.arch,
                'optim_state_dict': self.optim.state_dict(),
                'model_state_dict': self.model.state_dict(),
                'best_mean_iu': self.best_mean_iu,
                'best_prec': self.best_prec,
            }, osp.join(self.output_path, 'checkpoint.pth.tar'))
        if self.arch == 'rfnet':
            torch.save(
                {
                    'epoch': self.epoch,
                    'iteration': self.iteration,
                    'arch': self.arch,
                    'optim_state_dict': self.optim.state_dict(),
                    'optim_dec_state_dict': self.optim_dec.state_dict(),
                    'model_state_dict': self.model.state_dict(),
                    'best_mean_iu': self.best_mean_iu,
                    'best_prec': self.best_prec,
                }, osp.join(self.output_path, 'checkpoint.pth.tar'))

        if is_best:
            shutil.copy(osp.join(self.output_path, 'checkpoint.pth.tar'),
                        osp.join(self.output_path, 'model_best.pth.tar'))
        if is_prec_best:
            shutil.copy(osp.join(self.output_path, 'checkpoint.pth.tar'),
                        osp.join(self.output_path, 'model_prec_best.pth.tar'))

        self.writer.add_scalar('val/loss', val_loss, self.epoch)
        self.writer.add_scalar('val/precision', val_prec, self.epoch)
        self.writer.add_scalar('val/accuracy', metrics[0], self.epoch)
        self.writer.add_scalar('val/acc_class', metrics[1], self.epoch)
        self.writer.add_scalar('val/mean_iu', metrics[2], self.epoch)
        self.writer.add_scalar('val/fwacc', metrics[3], self.epoch)

        if self.scheduler != None:
            self.scheduler.step(val_prec)

        if self.training:
            self.model.train()
Exemple #23
0
    def train_epoch(self):
        self.model.train()
        if self.freeze_bn:
            self.model.apply(BNtoFixed)

        n_class = self.train_loader.dataset.n_class

        m = []
        for batch_idx, (rgb_img, ddd_img,
                        target) in tqdm.tqdm(enumerate(self.train_loader),
                                             total=len(self.train_loader),
                                             desc=' epoch %d' % self.epoch,
                                             ncols=80,
                                             leave=False):

            iteration = batch_idx + self.epoch * len(self.train_loader)
            self.iteration = iteration

            ## prepare input and label
            if self.cuda:
                rgb_img = rgb_img.cuda()
                ddd_img = ddd_img.cuda()
                target = target.cuda()

            ## main training function
            ## compute output of feed forward
            output = self.model(rgb_img, ddd_img)
            if self.arch.startswith('bisenet'):
                out_sup1 = F.interpolate(output[1],
                                         size=target.size()[1:],
                                         mode='bilinear')
                out_sup2 = F.interpolate(output[2],
                                         size=target.size()[1:],
                                         mode='bilinear')
                output = F.interpolate(output[0],
                                       size=target.size()[1:],
                                       mode='bilinear')
            elif self.arch.startswith('icnet'):
                out_sub24 = F.interpolate(output[1],
                                          size=target.size()[1:],
                                          mode='bilinear')
                out_sub4 = F.interpolate(output[2],
                                         size=target.size()[1:],
                                         mode='bilinear')
                output = F.interpolate(output[0],
                                       size=target.size()[1:],
                                       mode='bilinear')
            elif self.train_loader.dataset.encode_label:
                output = F.interpolate(output,
                                       size=target.size()[2:],
                                       mode='bilinear')
                target = target.float()

            ## compute loss and backpropagate
            loss = None
            if self.arch.startswith('bisenet'):
                loss_p = self.criterion(output, target)
                loss_a1 = self.crit_aux1(out_sup1, target)
                loss_a2 = self.crit_aux2(out_sup2, target)
                loss = loss_p + self.alphas[0] * loss_a1 + self.alphas[
                    1] * loss_a2
            elif self.arch.startswith('icnet'):
                loss_sub124 = self.criterion(output, target)
                loss_sub24 = self.crit_sub24(out_sub24, target)
                loss_sub4 = self.crit_sub4(out_sub4, target)
                loss = self.lambdas[0] * loss_sub4 + \
                       self.lambdas[1] * loss_sub24 + \
                       self.lambdas[2] * loss_sub124
            else:
                loss = self.criterion(output, target)

            loss_data = loss.data.item()
            self.optim.zero_grad()
            if self.arch.startswith('rfnet'):
                self.optim_dec.zero_grad()

            if self.use_amp:
                with amp.scale_loss(loss, self.optim) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            if self.arch.startswith('bisenet') or 'effnet' in self.arch:
                nn.utils.clip_grad_norm_(self.model.parameters(), 0.25)
            self.optim.step()
            if self.arch.startswith('rfnet'):
                self.optim_dec.step()

            ## the stats
            lbl_pred = output.data.max(1)[1].cpu().numpy()[:, :, :]
            lbl_true = target.data.cpu().numpy()
            metrics = label_accuracy_score(lbl_true, lbl_pred, n_class=n_class)

            with open(osp.join(self.output_path, 'log.csv'), 'a') as f:
                loss_data_str = '%.10f' % (loss_data)
                metrics_str = ['%.10f' % (a) for a in list(metrics)]
                elapsed_time = (
                    datetime.datetime.now(pytz.timezone('Asia/Jakarta')) -
                    self.timestamp_start).total_seconds()
                log = [self.epoch, self.iteration] + [loss_data_str] + \
                    metrics_str + [''] * 5 + [elapsed_time]
                log = map(str, log)
                f.write(','.join(log) + '\n')

            m.append(metrics)

            if self.max_iter != None and self.iteration >= self.max_iter:
                break

        m = np.mean(np.array(m), axis=0)
        self.writer.add_scalar('train/loss', loss_data, self.epoch)
        self.writer.add_scalar('train/accuracy', m[0], self.epoch)
        self.writer.add_scalar('train/acc_class', m[1], self.epoch)
        self.writer.add_scalar('train/mean_iu', m[2], self.epoch)
        self.writer.add_scalar('train/fwacc', m[3], self.epoch)
Exemple #24
0
def test(test_loader, net, criterion, epoch, showall=False):
    cnn0_loss, cnn0_accs, cnn0_mIoUs, cnn0_acc_clss, cnn0_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
    cnn1_loss, cnn1_accs, cnn1_mIoUs, cnn1_acc_clss, cnn1_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
    cnn2_loss, cnn2_accs, cnn2_mIoUs, cnn2_acc_clss, cnn2_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

    # switch to evaluation mode
    net.eval()
    start_time = time.time()
    for batch_idx, (datas, targets) in enumerate(test_loader):
        if args.cuda:
            datas = datas.cuda()
        datas = Variable(datas, volatile=True)

        # compute output
        scores = net(datas)

        multi_targets = combine_label(targets, COMB_DICTs)
        multi_targets_tensor = torch.from_numpy(multi_targets).long()
        if args.cuda:
            multi_targets_tensor = multi_targets_tensor.cuda()

        testlosses = []
        for i, score in enumerate(scores):
            targets_i = Variable(multi_targets_tensor[i, :, :, :])
            testlosses.append(criterion(score, targets_i))
        testloss = sum(testlosses)

        # measure accuracy and record loss
        preds = []
        for score in scores:
            p = score.data.max(1)[1]
            preds.append(p)
        for i, lbl_pred in enumerate(preds):
            lbl_pred = lbl_pred.cpu().numpy()[:, :, :]  # (n_batch, h, w)
            lbl_true = multi_targets[i, :, :, :]
            acc, acc_cls, mIoU, fscore = label_accuracy_score(
                lbl_true, lbl_pred, n_class=NUM_CLASSES[i])
            locals()['cnn%d_loss' % (i)].update(testlosses[i].data[0],
                                                datas.size(0))
            locals()['cnn%d_accs' % (i)].update(acc, datas.size(0))
            locals()['cnn%d_acc_clss' % (i)].update(acc_cls, datas.size(0))
            locals()['cnn%d_mIoUs' % (i)].update(mIoU, datas.size(0))
            locals()['cnn%d_fscore' % (i)].update(fscore, datas.size(0))

        if showall:
            trues = decode_labels(targets, num_images=len(targets))
            for i, t in enumerate(trues):
                Image.fromarray(t).save(
                    'runs/{}_{}/results/{}_{}_gt.png'.format(
                        args.name, args.dataset, batch_idx, i))
                Image.fromarray(
                    (unNormalize(datas.data).transpose(1, 2).transpose(
                        2, 3).cpu().numpy()[i] * 255).astype(np.uint8)).save(
                            'runs/{}_{}/results/{}_{}_img.png'.format(
                                args.name, args.dataset, batch_idx, i))
            lbl_pred = preds[2]
            pred = decode_labels(lbl_pred, num_images=len(lbl_pred))
            for i, p in enumerate(pred):
                Image.fromarray(p).save(
                    'runs/{}_{}/results/{}_{}_pred.png'.format(
                        args.name, args.dataset, batch_idx, i))

        if showall and args.visdom:
            plot_images(datas, [p.cpu().numpy() for p in preds],
                        multi_targets,
                        epoch,
                        split='test',
                        crop_size=map(int, args.input_size.split(',')))

    duration = time.time() - start_time
    print(
        '\nTest set: Loss: {:.4f}, Acc: {:.2f}%, mIoU: {:.4f}, Acc_cls: {:.2f}%, f-score: {:.2f}% ({:.3f} sec)\n'
        .format(cnn2_loss.avg, 100. * cnn2_accs.avg, cnn2_mIoUs.avg,
                100 * cnn2_acc_clss.avg, 100 * cnn2_fscore.avg, duration))
    if args.visdom:
        for i in range(3):
            plotter.plot('cnn%d_acc' % (i),
                         'test',
                         epoch,
                         locals()['cnn%d_accs' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_loss' % (i),
                         'test',
                         epoch,
                         locals()['cnn%d_loss' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_mIoU' % (i),
                         'test',
                         epoch,
                         locals()['cnn%d_mIoUs' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_acc_cls' % (i),
                         'test',
                         epoch,
                         locals()['cnn%d_acc_clss' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_fscore' % (i),
                         'test',
                         epoch,
                         locals()['cnn%d_fscore' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)

        # plot images in a grid
        if epoch == 1 or epoch % 10 == 0:
            plot_images(datas, [p.cpu().numpy() for p in preds],
                        multi_targets,
                        epoch,
                        split='test',
                        crop_size=map(int, args.input_size.split(',')))

    return cnn2_accs.avg, cnn2_mIoUs.avg
Exemple #25
0
    def validate(self):
        training = self.model.training
        self.model.eval()

        n_class = len(self.val_loader.dataset.class_names)

        val_loss = 0
        visualizations = []
        label_trues, label_preds = [], []
        with torch.no_grad():
            for batch_idx, (data, target) in tqdm.tqdm(
                    enumerate(self.val_loader), total=len(self.val_loader),
                    desc='Valid iteration=%d' % self.iteration, ncols=80,
                    leave=False):
                if self.cuda:
                    data, target = data.to('cuda'), target.to('cuda')
                score = self.model(data)

                loss = cross_entropy2d(score, target,
                                       size_average=self.size_average)
                if np.isnan(float(loss.item())):
                    raise ValueError('loss is nan while validating')
                val_loss += float(loss.item()) / len(data)

                imgs = data.data.cpu()
                lbl_pred = score.data.max(1)[1].cpu().numpy()[:, :, :]
                lbl_true = target.data.cpu()
                for img, lt, lp in zip(imgs, lbl_true, lbl_pred):
                    img, lt = self.val_loader.dataset.untransform(img, lt)
                    label_trues.append(lt)
                    label_preds.append(lp)
                    if len(visualizations) < 9:
                        viz = fcn.utils.visualize_segmentation(
                            lbl_pred=lp, lbl_true=lt, img=img, n_class=n_class)
                        visualizations.append(viz)
        metrics = utils.label_accuracy_score(
            label_trues, label_preds, n_class)

        out = osp.join(self.out, 'visualization_viz')
        if not osp.exists(out):
            os.makedirs(out)
        out_file = osp.join(out, 'iter%012d.jpg' % self.iteration)
        img_ = fcn.utils.get_tile_image(visualizations)
        #scipy.misc.imsave(out_file, img_)
        imageio.imwrite(out_file, img_)
        plt.imshow(imageio.imread(out_file))
        plt.savefig('imagesProduced/validate')
        #plt.show()

        val_loss /= len(self.val_loader)

        with open(osp.join(self.out, 'log.csv'), 'a') as f:
            elapsed_time = (
                datetime.datetime.now(pytz.timezone('America/Bogota')) -
                self.timestamp_start).total_seconds()
            log = [self.epoch, self.iteration] + [''] * 5 +                   [val_loss] + list(metrics) + [elapsed_time]
            log = map(str, log)
            f.write(','.join(log) + '\n')

        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        if is_best:
            self.best_mean_iu = mean_iu
        torch.save({
            'epoch': self.epoch,
            'iteration': self.iteration,
            'arch': self.model.__class__.__name__,
            'optim_state_dict': self.optim.state_dict(),
            'model_state_dict': self.model.state_dict(),
            'best_mean_iu': self.best_mean_iu,
        }, osp.join(self.out, 'checkpoint.pth.tar'))
        if is_best:
            shutil.copy(osp.join(self.out, 'checkpoint.pth.tar'),
                        osp.join(self.out, 'model_best.pth.tar'))

        if training:
            self.model.train()
Exemple #26
0
    def validate(self):
        # import matplotlib.pyplot as plt
        training = self.model.training
        self.model.eval()

        n_class = len(self.val_loader.dataset.class_names)

        val_loss = 0
        visualizations = []
        label_trues, label_preds = [], []
        with torch.no_grad():
            for batch_idx, (data, target) in tqdm.tqdm(
                    enumerate(self.val_loader),
                    total=len(self.val_loader),
                    desc="Valid iteration=%d" % self.iteration,
                    ncols=80,
                    leave=False,
            ):
                data, target = data.to(self.cuda), target.to(self.cuda)
                score = self.model(data)

                loss = self.cross_entropy2d(score, target)
                if np.isnan(float(loss.item())):
                    raise ValueError("loss is nan while validating")
                val_loss += float(loss.item()) / len(data)

                imgs = data.data.cpu()
                lbl_pred = score.data.max(1)[1].cpu().numpy()[:, :, :]
                lbl_true = target.data.cpu()
                for img, lt, lp in zip(imgs, lbl_true, lbl_pred):
                    img, lt = self.val_loader.dataset.untransform(img, lt)
                    label_trues.append(lt)
                    label_preds.append(lp)
                    if len(visualizations) < 9:
                        viz = fcn.utils.visualize_segmentation(lbl_pred=lp,
                                                               lbl_true=lt,
                                                               img=img,
                                                               n_class=n_class)
                        visualizations.append(viz)
        metrics = utils.label_accuracy_score(label_trues, label_preds, n_class)

        out = osp.join(self.out, "visualization_viz")
        if not osp.exists(out):
            os.makedirs(out)
        out_file = osp.join(out, "iter%012d.jpg" % self.iteration)
        img_ = fcn.utils.get_tile_image(visualizations)
        imageio.imwrite(out_file, img_)
        # plt.imshow(imageio.imread(out_file))
        # plt.show()

        val_loss /= len(self.val_loader)
        print(
            "acc {:0.3f}, acc_cls {:0.3f}, mean_iu {:0.3f}, fwavacc {:0.3f}, val loss {}"
            .format(metrics[0], metrics[1], metrics[2], metrics[3], val_loss))

        with open(osp.join(self.out, "log.csv"), "a") as f:
            elapsed_time = (datetime.datetime.now() -
                            self.timestamp_start).total_seconds()
            log = ([self.epoch, self.iteration] + [""] * 5 + [val_loss] +
                   list(metrics) + [elapsed_time])
            log = map(str, log)
            f.write(",".join(log) + "\n")

        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        if is_best:
            self.best_mean_iu = mean_iu
        torch.save(
            {
                "epoch": self.epoch,
                "iteration": self.iteration,
                "arch": self.model.__class__.__name__,
                "optim_state_dict": self.optim.state_dict(),
                "model_state_dict": self.model.state_dict(),
                "best_mean_iu": self.best_mean_iu,
            },
            osp.join(self.out, "checkpoint.pth.tar"),
        )
        if is_best:
            shutil.copy(
                osp.join(self.out, "checkpoint.pth.tar"),
                osp.join(self.out, "model_best.pth.tar"),
            )

        if training:
            self.model.train()
Exemple #27
0
    def validate(self, both_fcn_and_seenmask=False):
        self.model.eval()

        val_loss = 0
        lbl_trues, lbl_preds, visualizations = [], [], []

        for batch_idx, (data, target) in enumerate(self.val_loader):

            if both_fcn_and_seenmask:
                score, loss, lbl_pred, lbl_true = self.forward_szn(
                    data, target)
            else:
                score, loss, lbl_pred, lbl_true = self.forward(data, target)

            val_loss += float(loss.data[0])
            print(
                "Test Epoch {:<5} | Iteration {:<5} | Loss {:5.5f} | Score Sum {:10.5f}"
                .format(int(self.epoch), int(batch_idx), float(loss.data[0]),
                        float(score.sum().data[0])))

            img, lt, lp = data[0], lbl_true[0], lbl_pred[
                0]  # eliminate first dimension (n=1) for visualization
            img, lt = self.val_loader.dataset.untransform(img, lt)
            lbl_trues.append(lt)
            lbl_preds.append(lp)

            # generate visualization for first few images of val_loader
            if len(visualizations) < 25:
                viz = vis_utils.visualize_segmentation(
                    lbl_pred=lp,
                    lbl_true=lt,
                    img=img,
                    n_class=self.n_class,
                    label_names=self.label_names,
                    unseen=self.val_unseen)
                visualizations.append(viz)

        # save the visualizaton image
        if both_fcn_and_seenmask:
            out = osp.join(self.log_dir, 'szn_viz')
        else:
            out = osp.join(self.log_dir, 'fcn_viz')

        if not osp.exists(out):
            os.makedirs(out)
        out_file = osp.join(out, 'epoch%d.jpg' % self.epoch)

        viz_img = fcn.utils.get_tile_image(visualizations)
        scipy.misc.imsave(out_file, viz_img)

        # update the validation log for the current epoch
        if self.unseen:
            metrics = utils.label_accuracy_score(lbl_trues,
                                                 lbl_preds,
                                                 self.n_class,
                                                 unseen=self.val_unseen)
            metrics, seen_metrics, unseen_metrics = metrics

            self.tb_writer.add_scalar('fcn/val/seen/pxl_acc', seen_metrics[0],
                                      self.epoch)
            self.tb_writer.add_scalar('fcn/val/seen/class_acc',
                                      seen_metrics[1], self.epoch)
            self.tb_writer.add_scalar('fcn/val/seen/mean_iu', seen_metrics[2],
                                      self.epoch)
            self.tb_writer.add_scalar('fcn/val/seen/fwavacc', seen_metrics[3],
                                      self.epoch)

            self.tb_writer.add_scalar('fcn/val/unseen/pxl_acc',
                                      unseen_metrics[0], self.epoch)
            self.tb_writer.add_scalar('fcn/val/unseen/class_acc',
                                      unseen_metrics[1], self.epoch)
            self.tb_writer.add_scalar('fcn/val/unseen/mean_iu',
                                      unseen_metrics[2], self.epoch)
            self.tb_writer.add_scalar('fcn/val/unseen/fwavacc',
                                      unseen_metrics[3], self.epoch)

            print('seen pxl_acc: %.3f' % seen_metrics[0])
            print('seen class_acc: %.3f' % seen_metrics[1])
            print('seen mean_iu: %.3f' % seen_metrics[2])
            print('seen fwavacc: %.3f' % seen_metrics[3])

            print('unseen pxl_acc: %.3f' % unseen_metrics[0])
            print('unseen class_acc: %.3f' % unseen_metrics[1])
            print('unseen mean_iu: %.3f' % unseen_metrics[2])
            print('unseen fwavacc: %.3f' % unseen_metrics[3])

        else:
            metrics = utils.label_accuracy_score(lbl_trues, lbl_preds,
                                                 self.n_class)

        val_loss /= len(
            self.val_loader)  # val loss is averaged across all the images

        with open(osp.join(self.log_dir, 'val_log.csv'), 'a') as f:
            elapsed_time = datetime.datetime.now(
                pytz.timezone('US/Eastern')) - self.timestamp_start
            if self.unseen:
                log = [self.epoch, self.iteration] + [val_loss] + list(
                    metrics) + list(seen_metrics) + list(unseen_metrics) + [
                        elapsed_time
                    ]
            else:
                log = [self.epoch, self.iteration
                       ] + [val_loss] + list(metrics) + [elapsed_time]
            log = map(str, log)
            f.write(','.join(log) + '\n')

        # write metrics to tensorboard
        self.tb_writer.add_scalar('fcn/val/loss', val_loss, self.epoch)
        self.tb_writer.add_scalar('fcn/val/pxl_acc', metrics[0], self.epoch)
        self.tb_writer.add_scalar('fcn/val/class_acc', metrics[1], self.epoch)
        self.tb_writer.add_scalar('fcn/val/mean_iu', metrics[2], self.epoch)
        self.tb_writer.add_scalar('fcn/val/fwavacc', metrics[3], self.epoch)
        self.tb_writer.add_image('fcn/segmentations', viz_img, self.epoch)

        print('overall pxl_acc: %.3f' % metrics[0])
        print('overall class_acc: %.3f' % metrics[1])
        print('overall mean_iu: %.3f' % metrics[2])
        print('overall fwavacc: %.3f' % metrics[3])

        # track and update the best mean intersection over union
        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        if is_best:
            self.best_mean_iu = mean_iu

        # checkpoint the model's weights
        torch.save(
            {
                'epoch': self.epoch,
                'iteration': self.iteration,
                'arch': self.model.__class__.__name__,
                'optim_state_dict': self.optim.state_dict(),
                'model_state_dict': self.model.state_dict(),
                'best_mean_iu': self.best_mean_iu,
            }, osp.join(self.log_dir, 'checkpoint'))

        # save the weights for the best performing model so far
        if is_best:
            shutil.copy(osp.join(self.log_dir, 'checkpoint'),
                        osp.join(self.log_dir, 'best'))
Exemple #28
0
def train(train_loader, net, criterion, optimizer, epoch):
    cnn0_loss, cnn0_accs, cnn0_mIoUs, cnn0_acc_clss, cnn0_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
    cnn1_loss, cnn1_accs, cnn1_mIoUs, cnn1_acc_clss, cnn1_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
    cnn2_loss, cnn2_accs, cnn2_mIoUs, cnn2_acc_clss, cnn2_fscore = AverageMeter(
    ), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

    # switch to train mode
    net.train()
    start_time = time.time()
    all_start = start_time
    print('  Train Epoch  |      Loss    |      Acc       |     mIoU   |'
          '     Acc_cls    |    f-score     |  Time  ')
    for batch_idx, (datas, targets) in enumerate(train_loader):

        if args.cuda:
            datas = datas.cuda()
        datas = Variable(datas)

        # compute output
        scores = net(datas)

        multi_targets = combine_label(targets, COMB_DICTs)
        multi_targets_tensor = torch.from_numpy(multi_targets).long()
        if args.cuda:
            multi_targets_tensor = multi_targets_tensor.cuda()

        losses = []
        for i, score in enumerate(scores):
            targets_i = Variable(multi_targets_tensor[i, :, :, :])
            losses.append(criterion(score, targets_i))
        loss = sum(losses)

        # compute gradient and do optimizer step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        preds = []
        for score in scores:
            p = score.data.max(1)[1]
            preds.append(p)
        for i, lbl_pred in enumerate(preds):
            lbl_pred = lbl_pred.cpu().numpy()[:, :, :]  # (n_batch, h, w)
            lbl_true = multi_targets[i, :, :, :]
            acc, acc_cls, mIoU, fscore = label_accuracy_score(
                lbl_true, lbl_pred, n_class=NUM_CLASSES[i])
            locals()['cnn%d_loss' % (i)].update(losses[i].data[0],
                                                datas.size(0))
            locals()['cnn%d_accs' % (i)].update(acc, datas.size(0))
            locals()['cnn%d_acc_clss' % (i)].update(acc_cls, datas.size(0))
            locals()['cnn%d_mIoUs' % (i)].update(mIoU, datas.size(0))
            locals()['cnn%d_fscore' % (i)].update(fscore, datas.size(0))

        if batch_idx % args.log_interval == 0:
            duration = time.time() - start_time
            print(
                '{:3d}[{:4d}/{:4d}] | {:.3f}({:.3f}) | {:2.2f}%({:2.2f}%) | {:.2f}({:.2f}) | {:2.2f}%({:2.2f}%) |'
                ' {:2.2f}%({:2.2f}%) | ({:.3f} sec)'.format(
                    epoch, batch_idx * len(datas), len(train_loader.dataset),
                    cnn2_loss.val, cnn2_loss.avg, 100. * cnn2_accs.val,
                    100. * cnn2_accs.avg, cnn2_mIoUs.val, cnn2_mIoUs.avg,
                    100. * cnn2_acc_clss.val, 100. * cnn2_acc_clss.avg,
                    100. * cnn2_fscore.val, 100. * cnn2_fscore.avg, duration))

            start_time = time.time()

    duration = time.time() - all_start
    print(
        'Train Summary: Epoch {}, Acc: {:.2f}%, mIoU: {:.2f}, Acc_cls: {:.2f}%, f-score: {:.2f}% ({:.3f} sec)'
        .format(epoch, 100. * cnn2_accs.avg, cnn2_mIoUs.avg,
                100 * cnn2_acc_clss.avg, 100 * cnn2_fscore.avg, duration))

    # log avg values to visdom
    if args.visdom:
        for i in range(3):
            plotter.plot('cnn%d_acc' % (i),
                         'train',
                         epoch,
                         locals()['cnn%d_accs' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_loss' % (i),
                         'train',
                         epoch,
                         locals()['cnn%d_loss' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_mIoU' % (i),
                         'train',
                         epoch,
                         locals()['cnn%d_mIoUs' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_acc_cls' % (i),
                         'train',
                         epoch,
                         locals()['cnn%d_acc_clss' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)
            plotter.plot('cnn%d_fscore' % (i),
                         'train',
                         epoch,
                         locals()['cnn%d_fscore' % (i)].avg,
                         exp_name=args.name + '_' + args.dataset)

        # plot images in a grid
        if epoch == 1 or epoch % 10 == 0:
            plot_images(datas, [p.cpu().numpy() for p in preds],
                        multi_targets,
                        epoch,
                        split='train',
                        crop_size=map(int, args.input_size.split(',')))
    def validate(self):
        self.model.eval()

        val_loss = 0
        lbl_trues, lbl_preds, visualizations = [], [], []

        for batch_idx, (data, target) in enumerate(self.val_loader):

            score, loss, lbl_pred, lbl_true = self.forward(data, target)

            val_loss += float(loss.data[0])
            print("Seenmask Test Epoch {:<5} | Iteration {:<5} | Loss {:5.5f} | Score Sum {:10.5f}".format(int(self.epoch), int(batch_idx), float(loss.data[0]), float(score.sum().data[0])))

            img, lt, lp = data[0], lbl_true[0], lbl_pred[0] # eliminate first dimension (n=1) for visualization
            img, lt = self.val_loader.dataset.untransform(img, lt)
            lbl_trues.append(lt)
            lbl_preds.append(lp)

            # generate visualization for first few images of val_loader
            if len(visualizations) < 25:
                viz = vis_utils.visualize_seenmask(lbl_pred=lp, lbl_true=lt, img=img, n_class=self.n_class, unseen=self.unseen)
                visualizations.append(viz)

        # save the visualizaton image
        out = osp.join(self.log_dir, 'seenmask_viz')
        if not osp.exists(out):
            os.makedirs(out)
        out_file = osp.join(out, 'epoch%d.jpg' % self.epoch)
        viz_img = fcn.utils.get_tile_image(visualizations)
        scipy.misc.imsave(out_file, viz_img)



        metrics = utils.label_accuracy_score(lbl_trues, lbl_preds, self.n_class)
        val_loss /= len(self.val_loader) # val loss is averaged across all the images

        with open(osp.join(self.log_dir, 'seenmask_val_log.csv'), 'a') as f:
            elapsed_time = datetime.datetime.now(pytz.timezone('US/Eastern')) - self.timestamp_start
            log = [self.epoch, self.iteration] + [val_loss] + list(metrics) + [elapsed_time]
            log = map(str, log)
            f.write(','.join(log) + '\n')

        # write metrics to tensorboard
        self.tb_writer.add_scalar('seenmask/val/loss', val_loss, self.epoch)
        self.tb_writer.add_scalar('seenmask/val/pxl_acc', metrics[0], self.epoch)
        self.tb_writer.add_scalar('seenmask/val/class_acc', metrics[1], self.epoch)
        self.tb_writer.add_scalar('seenmask/val/mean_iu', metrics[2], self.epoch)
        self.tb_writer.add_scalar('seenmask/val/fwavacc', metrics[3], self.epoch)
        self.tb_writer.add_image('fcn/segmentations', viz_img, self.epoch)

        print('pxl_acc: %.3f'%metrics[0])
        print('class_acc: %.3f'%metrics[1])
        print('mean_iu: %.3f'%metrics[2])
        print('fwavacc: %.3f'%metrics[3])

        # track and update the best mean intersection over union
        mean_iu = metrics[2]
        is_best = mean_iu > self.best_mean_iu
        if is_best:
            self.best_mean_iu = mean_iu

        self.checkpoint['model_state_dict'] = self.model.state_dict() # TODO: verify
        torch.save(self.checkpoint, osp.join(self.log_dir, 'best')) 
def pseudo_labeling(num_epochs, model, data_loader, val_loader,
                    unlabeled_loader, device, val_every, file_name):
    # Instead of using current epoch we use a "step" variable to calculate alpha_weight
    # This helps the model converge faster
    from torch.optim.swa_utils import AveragedModel, SWALR
    from segmentation_models_pytorch.losses import SoftCrossEntropyLoss, JaccardLoss
    from adamp import AdamP

    criterion = [
        SoftCrossEntropyLoss(smooth_factor=0.1),
        JaccardLoss('multiclass', classes=12)
    ]
    optimizer = AdamP(params=model.parameters(), lr=0.0001, weight_decay=1e-6)
    swa_scheduler = SWALR(optimizer, swa_lr=0.0001)
    swa_model = AveragedModel(model)
    optimizer = Lookahead(optimizer, la_alpha=0.5)

    step = 100
    size = 256
    best_mIoU = 0
    model.train()
    print('Start Pseudo-Labeling..')
    for epoch in range(num_epochs):
        hist = np.zeros((12, 12))
        for batch_idx, (imgs, image_infos) in enumerate(unlabeled_loader):

            # Forward Pass to get the pseudo labels
            # --------------------------------------------- test(unlabelse)를 모델에 통과
            model.eval()
            outs = model(torch.stack(imgs).to(device))
            oms = torch.argmax(outs.squeeze(), dim=1).detach().cpu().numpy()
            oms = torch.Tensor(oms)
            oms = oms.long()
            oms = oms.to(device)

            # --------------------------------------------- 학습

            model.train()
            # Now calculate the unlabeled loss using the pseudo label
            imgs = torch.stack(imgs)
            imgs = imgs.to(device)
            # preds_array = preds_array.to(device)

            output = model(imgs)
            loss = 0
            for each in criterion:
                loss += each(output, oms)

            unlabeled_loss = alpha_weight(step) * loss

            # Backpropogate
            optimizer.zero_grad()
            unlabeled_loss.backward()
            optimizer.step()
            output = torch.argmax(output.squeeze(),
                                  dim=1).detach().cpu().numpy()
            hist = add_hist(hist,
                            oms.detach().cpu().numpy(),
                            output,
                            n_class=12)

            if (batch_idx + 1) % 25 == 0:
                acc, acc_cls, mIoU, fwavacc = label_accuracy_score(hist)
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, mIoU:{:.4f}'.
                      format(epoch + 1, num_epochs, batch_idx + 1,
                             len(unlabeled_loader), unlabeled_loss.item(),
                             mIoU))
            # For every 50 batches train one epoch on labeled data
            # 50배치마다 라벨데이터를 1 epoch학습
            if batch_idx % 50 == 0:

                # Normal training procedure
                for batch_idx, (images, masks, _) in enumerate(data_loader):
                    labeled_loss = 0
                    images = torch.stack(images)
                    # (batch, channel, height, width)
                    masks = torch.stack(masks).long()

                    # gpu 연산을 위해 device 할당
                    images, masks = images.to(device), masks.to(device)

                    output = model(images)

                    for each in criterion:
                        labeled_loss += each(output, masks)

                    optimizer.zero_grad()
                    labeled_loss.backward()
                    optimizer.step()

                # Now we increment step by 1
                step += 1

        if (epoch + 1) % val_every == 0:
            avrg_loss, val_mIoU = validation(epoch + 1, model, val_loader,
                                             criterion, device)
            if val_mIoU > best_mIoU:
                print('Best performance at epoch: {}'.format(epoch + 1))
                print('Save model in', saved_dir)
                best_mIoU = val_mIoU
                save_model(model, file_name=file_name)

        model.train()

        if epoch > 3:
            swa_model.update_parameters(model)
            swa_scheduler.step()