Exemple #1
0
def main_inference():
    print("Loading config...")
    opt = BaseOptions().parse()
    print("Loading dataset...")
    dset = TVQADataset(opt, paths)
    print("Loading model...")
    model = TVQANet(opt)

    device = torch.device("cuda:0" if opt.device != '-2'
                          and torch.cuda.is_available() else "cpu")

    # if specified, use opt.device else use the better of whats available (gpu > cpu)
    #model.to(opt.device if opt.device != '-2' else device)

    cudnn.benchmark = True

    # load pre-trained model if it exists
    loadPreTrainedModel(model=model, modelPath=paths["pretrained_model"])

    model.eval()
    model.inference_mode = True
    torch.set_grad_enabled(False)
    print("Evaluation Starts:\n")
    predictions = inference(opt, dset, model)
    print("predictions {}".format(predictions.keys()))
    pred_path = paths["pretrained_model"].replace(
        "best_valid.pth", "{}_inference_predictions.json".format(opt.mode))
    save_json(predictions, pred_path)
Exemple #2
0
def eval():
    # Initialize Logger
    logger.initLogger(args.debug)

    # print iSeeBetter architecture
    utils.printNetworkArch(netG=model, netD=None)

    # load model
    modelPath = os.path.join(args.model)
    utils.loadPreTrainedModel(gpuMode=args.gpu_mode, model=model, modelPath=modelPath)

    model.eval()
    count = 0
    avg_psnr_predicted = 0.0
    for batch in testing_data_loader:
        input, target, neigbor, flow, bicubic = batch[0], batch[1], batch[2], batch[3], batch[4]
        
        with torch.no_grad():
            if cuda:
                input = Variable(input).cuda(gpus_list[0])
                bicubic = Variable(bicubic).cuda(gpus_list[0])
                neigbor = [Variable(j).cuda(gpus_list[0]) for j in neigbor]
                flow = [Variable(j).cuda(gpus_list[0]).float() for j in flow]
            else:
                input = Variable(input).to(device=device, dtype=torch.float)
                bicubic = Variable(bicubic).to(device=device, dtype=torch.float)
                neigbor = [Variable(j).to(device=device, dtype=torch.float) for j in neigbor]
                flow = [Variable(j).to(device=device, dtype=torch.float) for j in flow]

        t0 = time.time()
        if args.chop_forward:
            with torch.no_grad():
                prediction = chop_forward(input, neigbor, flow, model, args.upscale_factor)
        else:
            with torch.no_grad():
                prediction = model(input, neigbor, flow)
        
        if args.residual:
            prediction = prediction + bicubic
            
        t1 = time.time()
        print("==> Processing: %s || Timer: %.4f sec." % (str(count), (t1 - t0)))
        save_img(prediction.cpu().data, str(count), True)
        save_img(target, str(count), False)
        
        prediction = prediction.cpu()
        prediction = prediction.data[0].numpy().astype(np.float32)
        prediction = prediction*255.
        
        target = target.squeeze().numpy().astype(np.float32)
        target = target*255.
                
        psnr_predicted = PSNR(prediction, target, shave_border=args.upscale_factor)
        print("PSNR Predicted = ", psnr_predicted)
        avg_psnr_predicted += psnr_predicted
        count += 1
    
    print("Avg PSNR Predicted = ", avg_psnr_predicted/count)
def eval():
    # Initialize Logger
    logger.initLogger(args.debug)

    # print iSeeBetter architecture
    utils.printNetworkArch(netG=model, netD=None)

    # load model
    modelPath = os.path.join(args.model)
    utils.loadPreTrainedModel(gpuMode=args.gpu_mode,
                              model=model,
                              modelPath=modelPath)

    model.eval()
    count = 0
    avg_psnr_predicted = 0.0
    for batch in testing_data_loader:
        #import pdb; pdb.set_trace()
        input, target, neigbor, flow, bicubic = batch[0], batch[1], batch[
            2], batch[3], batch[4]

        with torch.no_grad():
            if cuda:
                input = Variable(input).cuda(gpus_list[0])
                bicubic = Variable(bicubic).cuda(gpus_list[0])
                neigbor = [Variable(j).cuda(gpus_list[0]) for j in neigbor]
                flow = [Variable(j).cuda(gpus_list[0]).float() for j in flow]
            else:
                input = Variable(input).to(device=device, dtype=torch.float)
                bicubic = Variable(bicubic).to(device=device,
                                               dtype=torch.float)
                neigbor = [
                    Variable(j).to(device=device, dtype=torch.float)
                    for j in neigbor
                ]
                flow = [
                    Variable(j).to(device=device, dtype=torch.float)
                    for j in flow
                ]

        t0 = time.time()
        if args.chop_forward:
            with torch.no_grad():
                prediction = chop_forward(input, neigbor, flow, model,
                                          args.upscale_factor)
        else:
            with torch.no_grad():
                # unroll lists
                neigbor0 = neigbor[0]
                neigbor1 = neigbor[1]
                neigbor2 = neigbor[2]
                neigbor3 = neigbor[3]
                neigbor4 = neigbor[4]
                neigbor5 = neigbor[5]

                flow0 = flow[0]
                flow1 = flow[1]
                flow2 = flow[2]
                flow3 = flow[3]
                flow4 = flow[4]
                flow5 = flow[5]

                #summary(model, (input, neigbor0, neigbor1, neigbor2, neigbor3, neigbor4, neigbor5, flow0, flow1, flow2, flow3, flow4, flow5))
                print(model)

                prediction = model(input, neigbor, flow)
                # traced_model = torch.jit.trace(model, (input, neigbor0, neigbor1, neigbor2, neigbor3, neigbor4, neigbor5, flow0, flow1, flow2, flow3, flow4, flow5))
                # mlmodel = ct.converters.convert(traced_model, inputs=\
                #     [ct.TensorType(shape=input.shape), ct.TensorType(shape=neigbor0.shape),
                #      ct.TensorType(shape=neigbor1.shape), ct.TensorType(shape=neigbor2.shape),
                #      ct.TensorType(shape=neigbor3.shape), ct.TensorType(shape=neigbor4.shape),
                #      ct.TensorType(shape=neigbor5.shape), ct.TensorType(shape=flow0.shape),
                #      ct.TensorType(shape=flow1.shape), ct.TensorType(shape=flow2.shape),
                #      ct.TensorType(shape=flow3.shape), ct.TensorType(shape=flow4.shape),
                #      ct.TensorType(shape=flow5.shape)])#[input, neigbor, flow])
                # mlmodel.save('gen.mlmodel')

        if args.residual:
            prediction = prediction + bicubic

        t1 = time.time()
        print("==> Processing: %s || Timer: %.4f sec." % (str(count),
                                                          (t1 - t0)))
        save_img(prediction.cpu().data, str(count), True)
        save_img(target, str(count), False)

        prediction = prediction.cpu()
        prediction = prediction.data[0].numpy().astype(np.float32)
        prediction = prediction * 255.

        target = target.squeeze().numpy().astype(np.float32)
        target = target * 255.

        psnr_predicted = PSNR(prediction,
                              target,
                              shave_border=args.upscale_factor)
        print("PSNR Predicted = ", psnr_predicted)
        avg_psnr_predicted += psnr_predicted
        count += 1

    print("Avg PSNR Predicted = ", avg_psnr_predicted / count)
def main():
    """ Lets begin the training process! """

    args = parser.parse_args()

    # Initialize Logger
    logger.initLogger(args.debug)

    # Load dataset
    logger.info('==> Loading datasets')
    # print(args.file_list)
    # sys.exit()

    train_set = get_training_set(args.data_dir, args.nFrames,
                                 args.upscale_factor, args.data_augmentation,
                                 args.file_list, args.other_dataset,
                                 args.patch_size, args.future_frame)
    training_data_loader = DataLoader(dataset=train_set,
                                      num_workers=args.threads,
                                      batch_size=args.batchSize,
                                      shuffle=True)

    # Use generator as RBPN
    netG = RBPN(num_channels=3,
                base_filter=256,
                feat=64,
                num_stages=3,
                n_resblock=5,
                nFrames=args.nFrames,
                scale_factor=args.upscale_factor)
    logger.info('# of Generator parameters: %s',
                sum(param.numel() for param in netG.parameters()))

    # Use DataParallel?
    if args.useDataParallel:
        gpus_list = range(args.gpus)
        netG = torch.nn.DataParallel(netG, device_ids=gpus_list)

    # Use discriminator from SRGAN
    netD = Discriminator()
    logger.info('# of Discriminator parameters: %s',
                sum(param.numel() for param in netD.parameters()))

    # Generator loss
    generatorCriterion = nn.L1Loss() if not args.APITLoss else GeneratorLoss()

    # Specify device
    device = torch.device(
        "cuda:0" if torch.cuda.is_available() and args.gpu_mode else "cpu")

    if args.gpu_mode and torch.cuda.is_available():
        utils.printCUDAStats()

        netG.cuda()
        netD.cuda()

        netG.to(device)
        netD.to(device)

        generatorCriterion.cuda()

    # Use Adam optimizer
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)

    if args.APITLoss:
        logger.info(
            "Generator Loss: Adversarial Loss + Perception Loss + Image Loss + TV Loss"
        )
    else:
        logger.info("Generator Loss: L1 Loss")

    # print iSeeBetter architecture
    utils.printNetworkArch(netG, netD)

    if args.pretrained:
        modelPath = os.path.join(args.save_folder + args.pretrained_sr)
        utils.loadPreTrainedModel(gpuMode=args.gpu_mode,
                                  model=netG,
                                  modelPath=modelPath)

    # sys.exit()
    for epoch in range(args.start_epoch, args.nEpochs + 1):
        runningResults = trainModel(epoch, training_data_loader, netG, netD,
                                    optimizerD, optimizerG, generatorCriterion,
                                    device, args)

        if (epoch + 1) % (args.snapshots) == 0:
            saveModelParams(epoch, runningResults, netG, netD)