Exemple #1
0
def main(args, **kwargs):
    X = utils.load_raw(args)
    train_size = int(X.shape[0] * 0.7)
    if (args.cs):
        random_time_step = rd.randint(0, train_size)
        top_k = int(args.random_rate/100 * X.shape[1])
        if (top_k < 1): top_k = 1
        top_k_index = utils.largest_indices(X[random_time_step], top_k)
        top_k_index = np.sort(top_k_index)[0]

        if (args.top_k_random):
            top_k_index = np.random.randint(X.shape[1], size=top_k_index.shape[0])

    X = X[:train_size, top_k_index]
    dataset = args.dataset.split('_')[0]

    print('Data Shape: {}'.format(X.shape))
    print("Time period you want to know ? h='Hour', d='Day', m='Month'")
    time_period = input()

    if (dataset=='abilene'): 
        if (time_period=='h'):
            data = np.array([np.mean(X[i: i+12], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%12, 12)])
        elif (time_period=='d'):
            data = np.array([np.mean(X[i: i+288], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%288, 288)])
        elif (time_period=='m'):
            data = np.array([np.mean(X[i: i+8640], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%8640, 8640)])
    elif (dataset=='geant'): 
        if (time_period=='h'):
            data = np.array([np.mean(X[i: i+4], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%4, 4)])
        elif (time_period=='d'):
            data = np.array([np.mean(X[i: i+96], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%96, 96)])
        elif (time_period=='m'):
            data = np.array([np.mean(X[i: i+2880], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%2880, 2880)])
    elif (dataset=='brain'):
        if (time_period=='h'):
            data = np.array([np.mean(X[i: i+60], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%60, 60)])
        elif (time_period=='d'):
            data = np.array([np.mean(X[i: i+1440], axis=0) for i in
                       range(0, X.shape[0]-X.shape[0]%1440, 1440)])
        elif (time_period=='m'): print('Brain data was measured under 7 days!!')
    # data = data.reshape(-1, 1)
    print('MAX: {}, MIN: {}'.format(np.max(data), np.min(data)))

    # if not os.path.exists(os.path.join(os.getcwd(), 'plot_traffic')): os.mkdir('plot_traffic')
    # plt.hist(data, bins=12, color='green', range=(np.min(data), np.max(data)), log=True, density=1)
    # plt.title(dataset + '_' + time_period)
    # plt.savefig('plot_traffic/' + dataset + '_' + time_period + '.png')

    var = np.var(data, axis=0)
    if (time_period=='h'): print('Variance of {} by Hour: {}'.format(dataset, var))
    elif (time_period=='d'): print('Variance of {} by Day: {}'.format(dataset, var))
    elif (time_period=='m'): print('Variance of {} by Month: {}'.format(dataset, var))
Exemple #2
0
def get_phi(args, top_k_index):
    X = utils.load_raw(args)
    G = np.zeros((top_k_index.shape[0], X.shape[1]))

    for i, j in enumerate(G):
        j[top_k_index[i]] = 1

    return G
Exemple #3
0
def get_R(args):
    X = utils.load_raw(args)
    k_sparse = int(args.random_rate / 100 * X.shape[1])
    R = np.zeros((k_sparse, X.shape[1]))

    for i in range(R.shape[1]):
        d = np.random.randint(R.shape[0] * 2)
        if d < k_sparse: R[d, i] = 1
        else: continue

    return R
Exemple #4
0
 def test_load_roadnet_ca(self):
     path = raw_roadnet_ca
     graph = load_raw(path)
     assert is_weighted(graph) is False
     assert is_directed(graph) is False
     assert graph.has_edge('418', '5')
     assert graph.has_edge('108', '13')
     assert graph.has_edge('3248', '19')
     assert graph.has_edge('108', '8') is False
     assert graph.has_edge('16', '14') is False
     dump_graphml(graph, processed_roadnet_ca)
Exemple #5
0
 def test_load_usair97(self):
     path = raw_usair97
     graph = load_raw(path)
     assert is_weighted(graph) is True
     assert is_directed(graph) is False
     assert graph['2']['1']['weight'] == 0.0436
     assert graph['13']['6']['weight'] == 0.0143
     assert graph['144']['8']['weight'] == 0.2746
     assert graph['119']['95']['weight'] == 0.0323
     assert graph.has_edge('321', '163') is False
     assert graph.has_edge('230', '168') is False
     dump_graphml(graph, processed_usair97)
Exemple #6
0
 def test_load_openflights(self):
     path = raw_openflights
     graph = load_raw(path)
     assert is_weighted(graph) is False
     assert is_directed(graph) is True
     assert graph.has_edge('2', '4')
     assert graph.has_edge('4', '2')
     assert graph.has_edge('482', '61')
     assert graph.has_edge('592', '308')
     assert graph.has_edge('551', '375')
     assert graph.has_edge('375', '551') is False
     dump_graphml(graph, processed_openflights)
Exemple #7
0
 def test_load_roadnet_pa(self):
     path = raw_roadnet_pa
     graph = load_raw(path)
     assert is_weighted(graph) is False
     assert is_directed(graph) is False
     assert graph.has_edge('6299', '1')
     assert graph.has_edge('1', '6299')
     assert graph.has_edge('98292', '98290')
     assert graph.has_edge('450790', '450673')
     assert graph.has_edge('1068204', '592388')
     assert graph.has_edge('783720', '733101') is False
     assert graph.has_edge('290980', '168570') is False
     assert graph.has_edge('98260', '98318') is False
     dump_graphml(graph, processed_roadmap_pa)
Exemple #8
0
 def test_load_power(self):
     path = raw_power
     graph = load_raw(path)
     assert is_weighted(graph) is False
     assert is_directed(graph) is False
     assert graph.has_edge('387', '1')
     assert graph.has_edge('1813', '1308')
     assert graph.has_edge('1517', '1440')
     assert graph.has_edge('1527', '1440')
     assert graph.has_edge('4599', '4580')
     assert graph.has_edge('3797', '4724') is False
     assert graph.has_edge('2475', '1070') is False
     assert graph.has_edge('420', '425') is False
     assert graph.has_edge('465', '4576') is False
     dump_graphml(graph, processed_power)
Exemple #9
0
def get_psi(args, samples=10000, iterator=100):
    X = utils.load_raw(args)

    X = X[:samples, :]

    X_temp = np.array([np.max(X[args.seq_len_x + i: \
        args.seq_len_x + i + args.seq_len_y], axis=0) for i in range(samples - args.seq_len_x - args.seq_len_y)]).T

    size_D = int(math.sqrt(X.shape[1]))

    D = RandomDictionary(size_D, size_D)

    psi, _ = KSVD(D, MatchingPursuit,
                  int(args.random_rate / 100 * X.shape[1])).fit(
                      X_temp, iterator)

    return psi
Exemple #10
0
 def load_image(self, path):
     file = self.bucket.get_object(path)
     bytes = file.read()
     return load_raw(bytes)