Exemple #1
0
def main():
    if (EXPERIMENT_NAME not in os.listdir()):
        os.mkdir(EXPERIMENT_NAME)

    for feature in FEATURES:
        try:
            data = np.load(feature + "_stats.npy", allow_pickle=True).item()
            pca = joblib.load("pca_" + feature + "_stats")
            train_data, train_data_classes = make_train_data(data, True)
            test_data, test_data_classes = make_test_data(data)
            train_data_pca = np.array(pca.transform(train_data))
            test_data_pca = np.array(pca.transform(test_data))

            for c in C_VALUES:
                if (feature, c) in SKIP_COMBINATIONS:
                    print("Skipping " + feature + " SVM-linear C = " + str(c))
                    continue

                print("Computing " + feature + " SVM-linear C = " + str(c))
                res, model = experiment_svm_linear(train_data_pca,
                                                   train_data_classes,
                                                   test_data_pca,
                                                   test_data_classes, c,
                                                   TRAIN_VERBOSE)

                if res != None:
                    if SAVE_RESULTS:
                        filename = EXPERIMENT_NAME + "_" + feature + " svm_lin_c_" + str(
                            c) + "_results"
                        path = os.path.join(EXPERIMENT_NAME, filename)
                        joblib.dump(res, path)

                    if SAVE_RESULTS_TXT:
                        filename = EXPERIMENT_NAME + "_" + feature + " svm_lin_c_" + str(
                            c) + "_results.txt"
                        path = os.path.join(EXPERIMENT_NAME, filename)
                        save_txt(res, path)

                    if SAVE_MODEL:
                        filename = EXPERIMENT_NAME + "_" + feature + " svm_lin_c_" + str(
                            c) + "_model"
                        path = os.path.join(EXPERIMENT_NAME, filename)
                        joblib.dump(model, path)

        except Exception as e:
            print("Error during " + EXPERIMENT_NAME + " " + feature +
                  " SVM-linear C = " + str(c))
            print(e)
            pass
Exemple #2
0
                sample_episode += 1
                if sample_episode < 1000:
                    print('episodes:', sample_episode, '| score:', score)
                    writer.add_scalar('data/reward', score, sample_episode)
                    score = 0

        total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape(
            [-1, 4, 84, 84])
        total_next_state = np.stack(total_next_state).transpose(
            [1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
        total_reward = np.stack(total_reward).transpose().reshape([-1])
        total_action = np.stack(total_action).transpose().reshape([-1])
        total_done = np.stack(total_done).transpose().reshape([-1])

        value, next_value, policy = agent.forward_transition(
            total_state, total_next_state)
        total_target = []
        total_adv = []
        for idx in range(num_worker):
            target, adv = make_train_data(
                total_reward[idx * num_step:(idx + 1) * num_step],
                total_done[idx * num_step:(idx + 1) * num_step],
                value[idx * num_step:(idx + 1) * num_step],
                next_value[idx * num_step:(idx + 1) * num_step])
            # print(target.shape)
            total_target.append(target)
            total_adv.append(adv)

        print('training')
        agent.train_model(total_state, np.hstack(total_target), total_action,
                          np.hstack(total_adv))
Exemple #3
0
def main():

    args = parse_arguments()

    train_method = args.train_method
    env_id = args.env_id
    env_type = args.env_type

    if env_type == 'atari':
        env = gym.make(env_id)
        input_size = env.observation_space.shape 
        output_size = env.action_space.n 
        env.close()
    else:
        raise NotImplementedError

    is_load_model = False
    is_render = False
    os.makedirs('models', exist_ok=True)
    model_path = 'models/{}.model'.format(env_id)
    predictor_path = 'models/{}.pred'.format(env_id)
    target_path = 'models/{}.target'.format(env_id)

    results_dir = os.path.join('outputs', args.env_id)
    os.makedirs(results_dir, exist_ok=True)
    logger = Logger(results_dir)
    writer = SummaryWriter(os.path.join(results_dir, 'tensorboard', args.env_id))   

    use_cuda = args.use_gpu
    use_gae = args.use_gae
    use_noisy_net = args.use_noisynet
    lam = args.lam
    num_worker = args.num_worker
    num_step = args.num_step
    ppo_eps = args.ppo_eps
    epoch = args.epoch
    mini_batch = args.minibatch 
    batch_size = int(num_step * num_worker / mini_batch)
    learning_rate = args.learning_rate
    entropy_coef = args.entropy
    gamma = args.gamma
    int_gamma = args.int_gamma
    clip_grad_norm = args.clip_grad_norm
    ext_coef = args.ext_coef
    int_coef = args.int_coef
    sticky_action = args.sticky_action
    action_prob = args.action_prob
    life_done = args.life_done
    pre_obs_norm_step = args.obs_norm_step

    reward_rms = RunningMeanStd()
    obs_rms = RunningMeanStd(shape=(1, 1, 84, 84))
    discounted_reward = RewardForwardFilter(int_gamma)

    if args.train_method == 'RND':
        agent = RNDAgent
    else:
        raise NotImplementedError

    if args.env_type == 'atari':
        env_type = AtariEnvironment
    else:
        raise NotImplementedError

    agent = agent(
        input_size,
        output_size,
        num_worker,
        num_step,
        gamma,
        lam=lam,
        learning_rate=learning_rate,
        ent_coef=entropy_coef,
        clip_grad_norm=clip_grad_norm,
        epoch=epoch,
        batch_size=batch_size,
        ppo_eps=ppo_eps,
        use_cuda=use_cuda,
        use_gae=use_gae,
        use_noisy_net=use_noisy_net
    )

    logger.info('Start to initialize workers')
    works = []
    parent_conns = []
    child_conns = []
    for idx in range(num_worker):
        parent_conn, child_conn = Pipe()
        work = env_type(env_id, is_render, idx, child_conn, 
            sticky_action=sticky_action, p=action_prob, life_done=life_done, 
            max_step_per_episode=args.max_step_per_episode)
        work.start()
        works.append(work)
        parent_conns.append(parent_conn)
        child_conns.append(child_conn)

    states = np.zeros([num_worker, 4, 84, 84])

    sample_episode = 0
    sample_rall = 0
    sample_step = 0
    sample_env_idx = 0
    sample_i_rall = 0
    global_update = 0
    global_step = 0

    # normalize obs
    logger.info('Start to initailize observation normalization parameter.....')
    next_obs = []
    for step in range(num_step * pre_obs_norm_step):
        actions = np.random.randint(0, output_size, size=(num_worker,))

        for parent_conn, action in zip(parent_conns, actions):
            parent_conn.send(action)

        for parent_conn in parent_conns:
            s, r, d, rd, lr = parent_conn.recv()
            next_obs.append(s[3, :, :].reshape([1, 84, 84]))

        if len(next_obs) % (num_step * num_worker) == 0:
            next_obs = np.stack(next_obs)
            obs_rms.update(next_obs)
            next_obs = []
    logger.info('End to initalize...')

    pbar = tqdm.tqdm(total=args.total_frames)
    while True:
        logger.info('Iteration: {}'.format(global_update))
        total_state, total_reward, total_done, total_next_state, \
            total_action, total_int_reward, total_next_obs, total_ext_values, \
            total_int_values, total_policy, total_policy_np = \
            [], [], [], [], [], [], [], [], [], [], []
        global_step += (num_worker * num_step)
        global_update += 1

        # Step 1. n-step rollout
        for _ in range(num_step):
            actions, value_ext, value_int, policy = agent.get_action(np.float32(states) / 255.)

            for parent_conn, action in zip(parent_conns, actions):
                parent_conn.send(action)

            next_states, rewards, dones, real_dones, log_rewards, next_obs = \
                [], [], [], [], [], []
            for parent_conn in parent_conns:
                s, r, d, rd, lr = parent_conn.recv()
                next_states.append(s)
                rewards.append(r)
                dones.append(d)
                real_dones.append(rd)
                log_rewards.append(lr)
                next_obs.append(s[3, :, :].reshape([1, 84, 84]))

            next_states = np.stack(next_states)
            rewards = np.hstack(rewards)
            dones = np.hstack(dones)
            real_dones = np.hstack(real_dones)
            next_obs = np.stack(next_obs)

            # total reward = int reward + ext Reward
            intrinsic_reward = agent.compute_intrinsic_reward(
                ((next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5))
            intrinsic_reward = np.hstack(intrinsic_reward)
            sample_i_rall += intrinsic_reward[sample_env_idx]

            total_next_obs.append(next_obs)
            total_int_reward.append(intrinsic_reward)
            total_state.append(states)
            total_reward.append(rewards)
            total_done.append(dones)
            total_action.append(actions)
            total_ext_values.append(value_ext)
            total_int_values.append(value_int)
            total_policy.append(policy)
            total_policy_np.append(policy.cpu().numpy())

            states = next_states[:, :, :, :]

            sample_rall += log_rewards[sample_env_idx]

            sample_step += 1
            if real_dones[sample_env_idx]:
                sample_episode += 1
                writer.add_scalar('data/returns_vs_frames', sample_rall, global_step)
                writer.add_scalar('data/lengths_vs_frames', sample_step, global_step)
                writer.add_scalar('data/reward_per_epi', sample_rall, sample_episode)
                writer.add_scalar('data/reward_per_rollout', sample_rall, global_update)
                writer.add_scalar('data/step', sample_step, sample_episode)
                sample_rall = 0
                sample_step = 0
                sample_i_rall = 0

        # calculate last next value
        _, value_ext, value_int, _ = agent.get_action(np.float32(states) / 255.)
        total_ext_values.append(value_ext)
        total_int_values.append(value_int)

        total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
        total_reward = np.stack(total_reward).transpose().clip(-1, 1)
        total_action = np.stack(total_action).transpose().reshape([-1])
        total_done = np.stack(total_done).transpose()
        total_next_obs = np.stack(total_next_obs).transpose([1, 0, 2, 3, 4]).reshape([-1, 1, 84, 84])
        total_ext_values = np.stack(total_ext_values).transpose()
        total_int_values = np.stack(total_int_values).transpose()
        total_logging_policy = np.vstack(total_policy_np)
        
        # Step 2. calculate intrinsic reward
        # running mean intrinsic reward
        total_int_reward = np.stack(total_int_reward).transpose()
        total_reward_per_env = np.array([discounted_reward.update(reward_per_step) for reward_per_step in
                                         total_int_reward.T])
        mean, std, count = np.mean(total_reward_per_env), np.std(total_reward_per_env), len(total_reward_per_env)
        reward_rms.update_from_moments(mean, std ** 2, count)

        # normalize intrinsic reward
        total_int_reward /= np.sqrt(reward_rms.var)
        writer.add_scalar('data/int_reward_per_epi', np.sum(total_int_reward) / num_worker, sample_episode)
        writer.add_scalar('data/int_reward_per_rollout', np.sum(total_int_reward) / num_worker, global_update)

        # logging Max action probability
        writer.add_scalar('data/max_prob', softmax(total_logging_policy).max(1).mean(), sample_episode)

        # Step 3. make target and advantage
        # extrinsic reward calculate
        ext_target, ext_adv = make_train_data(total_reward, total_done, 
            total_ext_values, gamma, num_step, num_worker)

        # intrinsic reward calculate
        # None Episodic
        int_target, int_adv = make_train_data(total_int_reward, np.zeros_like(total_int_reward),
            total_int_values, int_gamma, num_step, num_worker)

        # add ext adv and int adv
        total_adv = int_adv * int_coef + ext_adv * ext_coef

        # Step 4. update obs normalize param
        obs_rms.update(total_next_obs)

        # Step 5. Training!
        agent.train_model(np.float32(total_state) / 255., ext_target, int_target, total_action,
                          total_adv, ((total_next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5),
                          total_policy)

        if args.save_models and global_update % 1000 == 0:
            torch.save(agent.model.state_dict(), 'models/{}-{}.model'.format(env_id, global_update))
            logger.info('Now Global Step :{}'.format(global_step))
            torch.save(agent.model.state_dict(), model_path)
            torch.save(agent.rnd.predictor.state_dict(), predictor_path)
            torch.save(agent.rnd.target.state_dict(), target_path)

        pbar.update(num_worker * num_step)
        if global_step >= args.total_frames:
            break

    pbar.close()
Exemple #4
0
def main():
    if 'NAME' in os.environ.keys():
        NAME = os.environ['NAME']
    else:
        raise ValueError('set NAME via env variable')

    try:
        env_settings = json.load(open(default_config['CarIntersectConfigPath'], 'r'))
    except:
        env_settings = yaml.load(open(default_config['CarIntersectConfigPath'], 'r'))

    if 'home-test' not in NAME:
        wandb.init(
            project='CarRacing_RND',
            reinit=True,
            name=f'rnd_{NAME}',
            config={'env_config': env_settings, 'agent_config': default_config},
        )

    # print({section: dict(config[section]) for section in config.sections()})
    train_method = default_config['TrainMethod']

    env_id = default_config['EnvID']
    # env_type = default_config['EnvType']

    # if env_type == 'mario':
    #     env = BinarySpaceToDiscreteSpaceEnv(gym_super_mario_bros.make(env_id), COMPLEX_MOVEMENT)
    # elif env_type == 'atari':
    #     env = gym.make(env_id)
    # else:
    #     raise NotImplementedError

    seed = np.random.randint(0, 2 ** 16 - 1)

    print(f'use name : {NAME}')
    print(f"use env config : {default_config['CarIntersectConfigPath']}")
    print(f'use seed : {seed}')
    print(f"use device : {os.environ['DEVICE']}")

    os.chdir('..')
    env = makeCarIntersect(env_settings)
    eval_env = create_eval_env(makeCarIntersect(env_settings))

    # input_size = env.observation_space.shape  # 4
    input_size = env.observation_space.shape
    assert isinstance(env.action_space, gym.spaces.Box)
    action_size = env.action_space.shape[0]  # 2

    env.close()

    is_load_model = True
    is_render = False
    # model_path = 'models/{}.model'.format(NAME)
    # predictor_path = 'models/{}.pred'.format(NAME)
    # target_path = 'models/{}.target'.format(NAME)

    # writer = SummaryWriter()

    use_cuda = default_config.getboolean('UseGPU')
    use_gae = default_config.getboolean('UseGAE')
    use_noisy_net = default_config.getboolean('UseNoisyNet')

    lam = float(default_config['Lambda'])
    num_worker = int(default_config['NumEnv'])

    num_step = int(default_config['NumStep'])

    ppo_eps = float(default_config['PPOEps'])
    epoch = int(default_config['Epoch'])
    mini_batch = int(default_config['MiniBatch'])
    batch_size = int(num_step * num_worker / mini_batch)
    learning_rate = float(default_config['LearningRate'])
    entropy_coef = float(default_config['Entropy'])
    gamma = float(default_config['Gamma'])
    int_gamma = float(default_config['IntGamma'])
    clip_grad_norm = float(default_config['ClipGradNorm'])
    ext_coef = float(default_config['ExtCoef'])
    int_coef = float(default_config['IntCoef'])

    sticky_action = default_config.getboolean('StickyAction')
    action_prob = float(default_config['ActionProb'])
    life_done = default_config.getboolean('LifeDone')

    reward_rms = RunningMeanStd()
    obs_rms = RunningMeanStd(shape=(1, 1, 84, 84))
    pre_obs_norm_step = int(default_config['ObsNormStep'])
    discounted_reward = RewardForwardFilter(int_gamma)

    agent = RNDAgent(
        input_size,
        action_size,
        num_worker,
        num_step,
        gamma,
        lam=lam,
        learning_rate=learning_rate,
        ent_coef=entropy_coef,
        clip_grad_norm=clip_grad_norm,
        epoch=epoch,
        batch_size=batch_size,
        ppo_eps=ppo_eps,
        use_cuda=use_cuda,
        use_gae=use_gae,
        use_noisy_net=use_noisy_net,
        device=os.environ['DEVICE'],
    )

    # if is_load_model:
    #     print('load model...')
    #     if use_cuda:
    #         agent.model.load_state_dict(torch.load(model_path))
    #         agent.rnd.predictor.load_state_dict(torch.load(predictor_path))
    #         agent.rnd.target.load_state_dict(torch.load(target_path))
    #     else:
    #         agent.model.load_state_dict(torch.load(model_path, map_location='cpu'))
    #         agent.rnd.predictor.load_state_dict(torch.load(predictor_path, map_location='cpu'))
    #         agent.rnd.target.load_state_dict(torch.load(target_path, map_location='cpu'))
    #     print('load finished!')

    works = []
    parent_conns = []
    child_conns = []
    for idx in range(num_worker):
        parent_conn, child_conn = Pipe()
        work = AtariEnvironment(env_id, is_render, idx, child_conn, sticky_action=sticky_action, p=action_prob,
                        life_done=life_done, settings=env_settings)
        work.start()
        works.append(work)
        parent_conns.append(parent_conn)
        child_conns.append(child_conn)

    os.chdir('rnd_continues')

    states = np.zeros([num_worker, 4, 84, 84])

    sample_episode = 0
    sample_rall = 0
    sample_step = 0
    sample_env_idx = 0
    sample_i_rall = 0
    global_update = 0
    global_step = 0

    logger = Logger(None, use_console=True, use_wandb=True, log_interval=1)

    print('Test evaluater:')
    evaluate_and_log(
        eval_env=eval_env,
        action_get_method=lambda eval_state: agent.get_action(
            np.tile(np.float32(eval_state), (1, 4, 1, 1)) / 255.
        )[0][0].cpu().numpy(),
        logger=logger,
        log_animation=False,
        exp_class='RND',
        exp_name=NAME,
        debug=True,
    )
    print('end evaluater test.')

    # normalize obs
    print('Start to initailize observation normalization parameter.....')

    # print('ALERT! pass section')
    # assert 'home-test' in NAME
    next_obs = []
    for step in range(num_step * pre_obs_norm_step):
        actions = np.random.uniform(-1, 1, size=(num_worker, action_size))

        for parent_conn, action in zip(parent_conns, actions):
            parent_conn.send(action)

        for parent_conn in parent_conns:
            s, r, d, rd, lr = parent_conn.recv()
            next_obs.append(s[3, :, :].reshape([1, 84, 84]))

        if len(next_obs) % (num_step * num_worker) == 0:
            next_obs = np.stack(next_obs)
            obs_rms.update(next_obs)
            next_obs = []
    print('End to initalize...')

    while True:
        total_state, total_reward, total_done, total_next_state, total_action, total_int_reward, total_next_obs, total_ext_values, total_int_values, total_policy_log_prob, total_policy_log_prob_np = \
            [], [], [], [], [], [], [], [], [], [], []

        # Step 1. n-step rollout
        for _ in range(num_step):
            global_step += num_worker
            # actions, value_ext, value_int, policy = agent.get_action(np.float32(states) / 255.)
            actions, value_ext, value_int, policy_log_prob = agent.get_action(np.float32(states) / 255.)

            for parent_conn, action in zip(parent_conns, actions):
                parent_conn.send(action.cpu().numpy())

            next_states, rewards, dones, real_dones, log_rewards, next_obs = [], [], [], [], [], []
            for parent_conn in parent_conns:
                s, r, d, rd, lr = parent_conn.recv()
                next_states.append(s)
                rewards.append(r)
                dones.append(d)
                real_dones.append(rd)
                log_rewards.append(lr)
                next_obs.append(s[3, :, :].reshape([1, 84, 84]))

            next_states = np.stack(next_states)
            rewards = np.hstack(rewards)
            dones = np.hstack(dones)
            real_dones = np.hstack(real_dones)
            next_obs = np.stack(next_obs)

            # total reward = int reward + ext Reward
            intrinsic_reward = agent.compute_intrinsic_reward(
                ((next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5))
            intrinsic_reward = np.hstack(intrinsic_reward)
            sample_i_rall += intrinsic_reward[sample_env_idx]

            total_next_obs.append(next_obs)
            total_int_reward.append(intrinsic_reward)
            total_state.append(states)
            total_reward.append(rewards)
            total_done.append(dones)
            total_action.append(actions.cpu().numpy())
            total_ext_values.append(value_ext)
            total_int_values.append(value_int)

            # total_policy.append(policy)
            # total_policy_np.append(policy.cpu().numpy())

            total_policy_log_prob.extend(policy_log_prob.cpu().numpy())

            states = next_states[:, :, :, :]

            sample_rall += log_rewards[sample_env_idx]

            sample_step += 1
            if real_dones[sample_env_idx]:
                sample_episode += 1
                # writer.add_scalar('data/reward_per_epi', sample_rall, sample_episode)
                # writer.add_scalar('data/reward_per_rollout', sample_rall, global_update)
                # writer.add_scalar('data/step', sample_step, sample_episode)
                logger.log_it({
                    'reward_per_episode': sample_rall,
                    'intrinsic_reward': sample_i_rall,
                    'episode_steps': sample_step,
                    'global_step_cnt': global_step,
                    'updates_cnt': global_update,
                })
                logger.publish_logs(step=global_step)
                sample_rall = 0
                sample_step = 0
                sample_i_rall = 0

        # calculate last next value
        _, value_ext, value_int, _ = agent.get_action(np.float32(states) / 255.)
        total_ext_values.append(value_ext)
        total_int_values.append(value_int)
        # --------------------------------------------------

        total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
        total_reward = np.stack(total_reward).transpose().clip(-1, 1)

        # total_action = np.stack(total_action).transpose().reshape([-1, action_size])
        total_action = np.array(total_action).reshape((-1, action_size))
        # total_log_prob_old = np.array(total_policy_log_prob).reshape((-1))

        total_done = np.stack(total_done).transpose()
        total_next_obs = np.stack(total_next_obs).transpose([1, 0, 2, 3, 4]).reshape([-1, 1, 84, 84])
        total_ext_values = np.stack(total_ext_values).transpose()
        total_int_values = np.stack(total_int_values).transpose()
        # total_logging_policy = np.vstack(total_policy_np)

        # Step 2. calculate intrinsic reward
        # running mean intrinsic reward
        total_int_reward = np.stack(total_int_reward).transpose()
        total_reward_per_env = np.array([discounted_reward.update(reward_per_step) for reward_per_step in
                                         total_int_reward.T])
        mean, std, count = np.mean(total_reward_per_env), np.std(total_reward_per_env), len(total_reward_per_env)
        reward_rms.update_from_moments(mean, std ** 2, count)

        # normalize intrinsic reward
        total_int_reward /= np.sqrt(reward_rms.var)
        # writer.add_scalar('data/int_reward_per_epi', np.sum(total_int_reward) / num_worker, sample_episode)
        # writer.add_scalar('data/int_reward_per_rollout', np.sum(total_int_reward) / num_worker, global_update)
        # -------------------------------------------------------------------------------------------

        # logging Max action probability
        # writer.add_scalar('data/max_prob', softmax(total_logging_policy).max(1).mean(), sample_episode)

        # Step 3. make target and advantage
        # extrinsic reward calculate
        ext_target, ext_adv = make_train_data(total_reward,
                                              total_done,
                                              total_ext_values,
                                              gamma,
                                              num_step,
                                              num_worker)

        # intrinsic reward calculate
        # None Episodic
        int_target, int_adv = make_train_data(total_int_reward,
                                              np.zeros_like(total_int_reward),
                                              total_int_values,
                                              int_gamma,
                                              num_step,
                                              num_worker)

        # add ext adv and int adv
        total_adv = int_adv * int_coef + ext_adv * ext_coef
        # -----------------------------------------------

        # Step 4. update obs normalize param
        obs_rms.update(total_next_obs)
        # -----------------------------------------------

        global_update += 1
        # Step 5. Training!
        agent.train_model(np.float32(total_state) / 255., ext_target, int_target, total_action,
                          total_adv, ((total_next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5),
                          total_policy_log_prob)

        # if global_step % (num_worker * num_step * 100) == 0:
        #     print('Now Global Step :{}'.format(global_step))
        #     torch.save(agent.model.state_dict(), model_path)
        #     torch.save(agent.rnd.predictor.state_dict(), predictor_path)
        #     torch.save(agent.rnd.target.state_dict(), target_path)

        if global_update % 100 == 0:
            evaluate_and_log(
                eval_env=eval_env,
                action_get_method=lambda eval_state: agent.get_action(
                    np.tile(np.float32(eval_state), (1, 4, 1, 1)) / 255.
                )[0][0].cpu().numpy(),
                logger=logger,
                log_animation=True,
                exp_class='RND',
                exp_name=NAME,
            )
            logger.publish_logs(step=global_step)
Exemple #5
0
def main():
	if(EXPERIMENT_NAME not in os.listdir()):
		os.mkdir(EXPERIMENT_NAME)

	# neural networks with single hidden layer
	for feature in FEATURES:
		try:
			data = np.load(feature + "_stats.npy",allow_pickle=True).item()
			pca = joblib.load("pca_" + feature + "_stats_noval")

			train_data, train_data_classes = make_train_data(data,False)
			test_data, test_data_classes = make_test_data(data)
			val_data, val_data_classes = make_val_data(data)

			train_data_pca = np.array(pca.transform(train_data))
			test_data_pca = np.array(pca.transform(test_data))
			val_data_pca = np.array(pca.transform(val_data))

			train_data_classes = np.array(train_data_classes)
			val_data_classes = np.array(val_data_classes)
			test_data_classes = np.array(test_data_classes)

			print("Computing " + feature  + " single hidden layer neural network")
			res,model = experiment_mlp_singlelayer(train_data_pca,train_data_classes,val_data_pca,val_data_classes,test_data_pca,test_data_classes,MLP_VERBOSE)

			if res != None:
				if SAVE_RESULTS:
					filename = EXPERIMENT_NAME + "_" + feature + "_mlp_single_layer_results"
					path = os.path.join(EXPERIMENT_NAME,filename)
					joblib.dump(res,path)

				if SAVE_RESULTS_TXT:
					filename = EXPERIMENT_NAME + "_" + feature + "_mlp_single_layer_results.txt"
					path = os.path.join(EXPERIMENT_NAME,filename)
					save_txt(res,path)

				if SAVE_MODEL:
					filename = EXPERIMENT_NAME + "_" + feature + "_mlp_single_layer"
					path = os.path.join(EXPERIMENT_NAME,filename)
					save_mlp(model,path)

		except Exception as e:
			print("Error during " + EXPERIMENT_NAME + " " + feature  + " single hidden layer neural network")
			print(e)
			pass

	# neural networks with multiple hidden layers
	# welch32 only
	data = np.load("welch_32_stats.npy",allow_pickle=True).item()
	pca = joblib.load("pca_welch_32_stats_noval")

	train_data, train_data_classes = make_train_data(data,False)
	test_data, test_data_classes = make_test_data(data)
	val_data, val_data_classes = make_val_data(data)

	train_data_pca = np.array(pca.transform(train_data))
	test_data_pca = np.array(pca.transform(test_data))
	val_data_pca = np.array(pca.transform(val_data))

	train_data_classes = np.array(train_data_classes)
	val_data_classes = np.array(val_data_classes)
	test_data_classes = np.array(test_data_classes)

	print("Computing welch_32 multiple hidden layer neural network, specification 1:")
	print("3 hidden layers, LReLU activation (a = 0.02), learning rate = 0.01")
	print("decay = 1e-6, momentum = 0.9, patience = 50, max epochs = 2000")
	try:
		res,model = experiment_mlp_1(train_data_pca,train_data_classes,val_data_pca,val_data_classes,test_data_pca,test_data_classes,MLP_VERBOSE)
		if res != None:
			if SAVE_RESULTS:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_1_results"
				path = os.path.join(EXPERIMENT_NAME,filename)
				joblib.dump(res,path)

			if SAVE_RESULTS_TXT:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_1_results.txt"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_txt(res,path)

			if SAVE_MODEL:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_1"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_mlp(model,path)

	except Exception as e:
		print("Error during " + EXPERIMENT_NAME + " welch_32 multiple hidden layer neural network, specification 1")
		print(e)
		pass

	print("Computing welch_32 multiple hidden layer neural network, specification 2:")
	print("4 hidden layers, tanh + LReLU activation (a = 0.02), learning rate = 0.005")
	print("decay = 1e-6, momentum = 0.9, patience = 250, max epochs = 3000")
	try:
		res,model = experiment_mlp_2(train_data_pca,train_data_classes,val_data_pca,val_data_classes,test_data_pca,test_data_classes,MLP_VERBOSE)
		if res != None:
			if SAVE_RESULTS:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_2_results"
				path = os.path.join(EXPERIMENT_NAME,filename)
				joblib.dump(res,path)

			if SAVE_RESULTS_TXT:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_2_results.txt"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_txt(res,path)

			if SAVE_MODEL:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_2"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_mlp(model,path)

	except Exception as e:
		print("Some problem during " + EXPERIMENT_NAME + " welch_32 multiple hidden layer neural network, specification 2")
		print(e)
		pass

	print("Computing welch_32 multiple hidden layer neural network, specification 3:")
	print("6 hidden layers, ReLU activation, learning rate = 0.01")
	print("decay = 1e-6, momentum = 0.9, patience = 70, max epochs = 2000")
	try:
		res,model = experiment_mlp_3(train_data_pca,train_data_classes,val_data_pca,val_data_classes,test_data_pca,test_data_classes,MLP_VERBOSE)
		if res != None:
			if SAVE_RESULTS:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_3_results"
				path = os.path.join(EXPERIMENT_NAME,filename)
				joblib.dump(res,path)

			if SAVE_RESULTS_TXT:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_3_results.txt"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_txt(res,path)

			if SAVE_MODEL:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_3"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_mlp(model,path)

	except Exception as e:
		print("Error during " + EXPERIMENT_NAME + " welch_32 multiple hidden layer neural network, specification 3")
		print(e)
		pass

	print("Computing welch_32 multiple hidden layer neural network, specification 4:")
	print("3 hidden layers, tanh activation, learning rate = 0.01")
	print("decay = 1e-6, momentum = 0.9, patience = 250, max epochs = 3000")
	try:
		res,model = experiment_mlp_4(train_data_pca,train_data_classes,val_data_pca,val_data_classes,test_data_pca,test_data_classes,MLP_VERBOSE)
		if res != None:
			if SAVE_RESULTS:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_4_results"
				path = os.path.join(EXPERIMENT_NAME,filename)
				joblib.dump(res,path)

			if SAVE_RESULTS_TXT:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_4_results.txt"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_txt(res,path)

			if SAVE_MODEL:
				filename = EXPERIMENT_NAME + "_welch_32_mlp_multi_layer_spec_4"
				path = os.path.join(EXPERIMENT_NAME,filename)
				save_mlp(model,path)

	except Exception as e:
		print("Error during " + EXPERIMENT_NAME + " welch_32 multiple hidden layer neural network, specification 4")
		print(e)
		pass
def evaluate_masks(args, rng, masks, ddt_partials_u, path_save_model):
    X_deltaout, Y_tf, ctdata0l, ctdata0r, ctdata1l, ctdata1r = make_train_data(
        args, args.nbre_sample, args.nombre_round_eval, rng)
    X_deltaout_v, Y_vf, ctdata0l_v, ctdata0r_v, ctdata1l_v, ctdata1r_v = make_train_data(
        args, args.nbre_sampleval, args.nombre_round_eval, rng)

    res_all = []

    all_masks = []

    dico_train = {}
    dico_val = {}

    for masks_act in range(len(masks[0])):
        ddt_partials = {}
        hamming_nbre = 0
        masks_uniaue = [[masks[i][masks_act]] for i in range(len(masks))]

        name_input_cic = ""
        for i in range(len(masks)):
            hamming_nbre += np.sum(
                np.array([
                    int(x) for x in list('{0:0b}'.format(masks_uniaue[i][0]))
                ]))
            name_input_cic += str(masks_uniaue[i][0])
            name_input_cic += "_"
        name_input_cic = name_input_cic[:-1]

        all_masks.append(name_input_cic)

        ddt_partials[name_input_cic] = ddt_partials_u[name_input_cic]
        nbre_param = len(ddt_partials[list(ddt_partials.keys())[0]].keys())

        X_deltaout, X_DDT, feature_name = convert_binary_to_probability(
            args,
            ctdata0l,
            ctdata0r,
            ctdata1l,
            ctdata1r,
            ddt_partials,
            masks_uniaue,
            flag=False)

        X_deltaout_v, X_DDT_v, feature_name_v = convert_binary_to_probability(
            args,
            ctdata0l_v,
            ctdata0r_v,
            ctdata1l_v,
            ctdata1r_v,
            ddt_partials,
            masks_uniaue,
            flag=True)

        dico_train[name_input_cic] = [X_DDT, feature_name]
        dico_val[name_input_cic] = [X_DDT_v, feature_name_v]

        param_best = {
            'alpha': 0.3922345684859479,
            'average': False,
            'l1_ratio': 0.5605798090010486,
            'loss': 'hinge',
            'penalty': 'elasticnet',
            'tol': 0.01
        }
        clf = linear_model.SGDClassifier(**param_best, random_state=args.seed)
        clf.fit(X_DDT, Y_tf)
        y_pred = clf.predict(X_DDT_v)

        res_all.append([
            hamming_nbre, 1 - int(np.log2(nbre_param) + 0.1) / hamming_nbre,
            accuracy_score(y_pred=y_pred, y_true=Y_vf), "QQ"
        ])
        # save_logs(path_save_model + 'logs_linear_reg.txt', y_pred, Y_vf, clf, X_DDT, Y_tf)
        # plot_coefficients(clf, feature_name, path_save_model, name=path_save_model + "features_importances_Linear.png")
        # https://towardsdatascience.com/feature-selection-techniques-for-classification-and-python-tips-for-their-application-10c0ddd7918b
        del ddt_partials

    res_all = np.array(res_all)
    np.save(path_save_model + 'masks_quality.txt', res_all)

    data = res_all
    data2 = np.zeros_like(data, dtype="float")
    data2[:, 0] = np.nan_to_num(np.array([int(x) for x in data[:, 0]]))
    data2[:, 1] = np.nan_to_num(np.array([float(x) for x in data[:, 1]]))
    data2[:, 2] = np.nan_to_num(np.array([float(x) for x in data[:, 2]]))
    data2[:, 3] = np.nan_to_num(np.array([1 for x in data[:, 3]]))

    data4 = np.load(args.path_random)
    data3 = np.zeros_like(data4, dtype="float")
    data3[:, 0] = np.array([int(x) for x in data4[:, 0]])
    data3[:, 1] = np.array([1 - float(x) for x in data4[:, 1]])
    data3[:, 2] = np.array([float(x) for x in data4[:, 2]])
    data3[:, 3] = np.array([0 for x in data4[:, 3]])

    data_f = np.concatenate((data2, data3))

    data_pd = pd.DataFrame(
        data_f, columns=["hamming", "compression", "accuracy_alone", "label"])
    data_pd = data_pd.sort_values(by=['hamming', "compression"])

    fig = plt.figure(figsize=(40, 15))

    plt.subplot(1, 3, 1)
    x = data_pd.hamming.values[data_pd['label'] == 1]
    ys = data_pd.compression.values[data_pd['label'] == 1]
    colors = cm.rainbow(np.linspace(0, 1, len(ys)))
    plt.scatter(x, ys, color=colors[0])

    x = data_pd.hamming.values[data_pd['label'] == 0]
    ys = data_pd.compression.values[data_pd['label'] == 0]
    plt.scatter(x, ys, color=colors[-1])
    plt.legend(["SHAPLEY MASKS", "RANDOM MASKS"])
    plt.xlabel("Number of Hamming")
    plt.ylabel("Compression of the DDT by the mask")
    plt.title("Compressions with Number of Hamming")

    plt.subplot(1, 3, 2)
    x = data_pd.hamming.values[data_pd['label'] == 1]
    ys = data_pd.accuracy_alone[data_pd['label'] == 1]
    plt.scatter(x, ys, color=colors[0])
    x = data_pd.hamming.values[data_pd['label'] == 0]
    ys = data_pd.accuracy_alone.values[data_pd['label'] == 0]
    plt.scatter(x, ys, color=colors[-1])
    plt.legend(["SHAPLEY MASKS", "RANDOM MASKS"])
    plt.xlabel("Number of Hamming")
    plt.ylabel("Accuracy of the mask alone")
    plt.title("Accuracy with Number of Hamming")

    plt.subplot(1, 3, 3)
    x = data_pd.compression.values[data_pd['label'] == 1]
    ys = data_pd.accuracy_alone[data_pd['label'] == 1]
    plt.scatter(x, ys, color=colors[0])
    x = data_pd.compression.values[data_pd['label'] == 0]
    ys = data_pd.accuracy_alone.values[data_pd['label'] == 0]
    plt.scatter(x, ys, color=colors[-1])
    plt.legend(["SHAPLEY MASKS", "RANDOM MASKS"])
    plt.ylabel("Accuracy of the mask alone")
    plt.xlabel("Compression of the DDT by the mask")
    plt.title("Accuracy with compression")

    fig.suptitle(
        'Plot of the 3 characteristic that make a good mask for SHAPLEY masks (blue) and random masks (red)',
        fontsize=30)
    plt.savefig(path_save_model + "2D real plot.png")

    fig = plt.figure(figsize=(30, 30))
    ax = fig.add_subplot(111, projection='3d')

    # For each set of style and range settings, plot n random points in the box
    # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
    for index, m, color_ici in [(1, 'o', 0), (0, '^', -1)]:
        xs = data_pd.hamming.values[data_pd['label'] == index]
        ys = data_pd.compression.values[data_pd['label'] == index]
        zs = data_pd.accuracy_alone.values[data_pd['label'] == index]
        ax.scatter(xs, ys, zs, marker=m, color=colors[color_ici], s=30)
    ax.legend(["SHAPLEY masks", "Random masks"])

    ax.set_xlabel('Number of Hamming')
    ax.set_ylabel('Compression of the DDT by the mask')
    ax.set_zlabel('Accuracy of the mask alone')
    fig.suptitle(
        'Plot of the 3 characteristic that make a good mask for SHAPLEY masks (blue) and random masks (red)',
        fontsize=16)
    plt.savefig(path_save_model + "3D real plot.png")

    def circleOfCorrelations(pc_infos, ebouli):
        plt.subplot(1, 2, 1)
        plt.Circle((10, 15), radius=1, color='g', fill=False)
        circle1 = plt.Circle((0, 0), radius=1, color='g', fill=False)
        fig = plt.gcf()
        fig.gca().add_artist(circle1)
        for idx in range(len(pc_infos["PC-0"])):
            x = pc_infos["PC-0"][idx]
            y = pc_infos["PC-1"][idx]
            plt.plot([0.0, x], [0.0, y], 'k-')
            plt.plot(x, y, 'rx')
            plt.annotate(pc_infos.index[idx], xy=(x, y))
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-2 (%s%%)" % str(ebouli[1])[:4].lstrip("0."))
        plt.xlim((-1, 1))
        plt.ylim((-1, 1))
        plt.axhline(y=0, color='k', ls='--')
        plt.axvline(x=0, c='k', ls='--')
        plt.title("Circle of Correlations")

    def circleOfCorrelations2(pc_infos, ebouli):
        plt.subplot(1, 2, 1)
        plt.Circle((10, 15), radius=1, color='g', fill=False)
        circle1 = plt.Circle((0, 0), radius=1, color='g', fill=False)
        fig = plt.gcf()
        fig.gca().add_artist(circle1)
        for idx in range(len(pc_infos["PC-0"])):
            x = pc_infos["PC-0"][idx]
            y = pc_infos["PC-2"][idx]
            plt.plot([0.0, x], [0.0, y], 'k-')
            plt.plot(x, y, 'rx')
            plt.annotate(pc_infos.index[idx], xy=(x, y))
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-2 (%s%%)" % str(ebouli[2])[:4].lstrip("0."))
        plt.xlim((-1, 1))
        plt.ylim((-1, 1))
        plt.axhline(y=0, color='k', ls='--')
        plt.axvline(x=0, c='k', ls='--')
        plt.title("Circle of Correlations")

    def myPCA(df, color_ici):
        # Normalize data
        plt.figure(figsize=(30, 15))
        df_norm = StandardScaler().fit_transform(
            df)  # (df - df.mean()) / df.std()
        # PCA
        df_norm = np.nan_to_num(df_norm)
        pca = PCA(n_components=3)  # n_components='mle')
        pca_res = pca.fit_transform(
            df_norm)  # pca.fit_transform(df_norm.values)
        # Ebouli
        ebouli = pd.Series(pca.explained_variance_ratio_)
        # Circle of correlations
        # http://stackoverflow.com/a/22996786/1565438
        coef = np.transpose(pca.components_)
        cols = ['PC-' + str(x) for x in range(len(ebouli))]
        pc_infos = pd.DataFrame(coef, columns=cols, index=df.columns)
        circleOfCorrelations(pc_infos, ebouli)
        plt.subplot(1, 2, 2)
        dat = pd.DataFrame(pca_res, columns=cols)
        # print(dat["PC-0"])
        # print(dat["PC-1"])
        plt.scatter(dat["PC-0"].values, dat["PC-1"].values, color=color_ici)
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-2 (%s%%)" % str(ebouli[1])[:4].lstrip("0."))
        plt.title("PCA")
        plt.savefig(path_save_model + str(color_ici) +
                    "2D ACP plot pca1-2 .png")

    def myPCA2(df, label_QQ, labelrandom, color1, color2):
        # Normalize data
        plt.figure(figsize=(30, 15))
        df_norm = StandardScaler().fit_transform(
            df)  # (df - df.mean()) / df.std()
        # PCA
        df_norm = np.nan_to_num(df_norm)
        pca = PCA(n_components=3)  # n_components='mle')
        pca_res = pca.fit_transform(
            df_norm)  # pca.fit_transform(df_norm.values)
        # Ebouli
        ebouli = pd.Series(pca.explained_variance_ratio_)
        # Circle of correlations
        # http://stackoverflow.com/a/22996786/1565438
        coef = np.transpose(pca.components_)
        cols = ['PC-' + str(x) for x in range(len(ebouli))]
        pc_infos = pd.DataFrame(coef, columns=cols, index=df.columns)
        circleOfCorrelations(pc_infos, ebouli)
        plt.subplot(1, 2, 2)
        dat = pd.DataFrame(pca_res, columns=cols)
        # print(dat["PC-0"])
        # print(dat["PC-1"])
        plt.scatter(dat["PC-0"].values[label_QQ],
                    dat["PC-1"].values[label_QQ],
                    color=color1)
        plt.scatter(dat["PC-0"].values[labelrandom],
                    dat["PC-1"].values[labelrandom],
                    color=color2)
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-3 (%s%%)" % str(ebouli[1])[:4].lstrip("0."))
        plt.title("PCA")
        plt.savefig(path_save_model + str(color_ici) +
                    "2D ACP plot comparaison pca1-2.png")

        return pca_res

    def myPCA_v2(df, color_ici):
        # Normalize data
        plt.figure(figsize=(30, 15))
        df_norm = StandardScaler().fit_transform(
            df)  # (df - df.mean()) / df.std()
        # PCA
        df_norm = np.nan_to_num(df_norm)
        pca = PCA(n_components=3)  # n_components='mle')
        pca_res = pca.fit_transform(
            df_norm)  # pca.fit_transform(df_norm.values)
        # Ebouli
        ebouli = pd.Series(pca.explained_variance_ratio_)
        # Circle of correlations
        # http://stackoverflow.com/a/22996786/1565438
        coef = np.transpose(pca.components_)
        cols = ['PC-' + str(x) for x in range(len(ebouli))]
        pc_infos = pd.DataFrame(coef, columns=cols, index=df.columns)
        circleOfCorrelations2(pc_infos, ebouli)
        plt.subplot(1, 2, 2)
        dat = pd.DataFrame(pca_res, columns=cols)
        # print(dat["PC-0"])
        # print(dat["PC-1"])
        plt.scatter(dat["PC-0"].values, dat["PC-2"].values, color=color_ici)
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-3 (%s%%)" % str(ebouli[2])[:4].lstrip("0."))
        plt.title("PCA")
        plt.savefig(path_save_model + str(color_ici) +
                    "2D ACP plot pca 1 -3 .png")

    def myPCA2_v2(df, label_QQ, labelrandom, color1, color2):
        # Normalize data
        plt.figure(figsize=(30, 15))
        df_norm = StandardScaler().fit_transform(
            df)  # (df - df.mean()) / df.std()
        # PCA
        df_norm = np.nan_to_num(df_norm)
        pca = PCA(n_components=3)  # n_components='mle')
        pca_res = pca.fit_transform(
            df_norm)  # pca.fit_transform(df_norm.values)
        # Ebouli
        ebouli = pd.Series(pca.explained_variance_ratio_)
        # Circle of correlations
        # http://stackoverflow.com/a/22996786/1565438
        coef = np.transpose(pca.components_)
        cols = ['PC-' + str(x) for x in range(len(ebouli))]
        pc_infos = pd.DataFrame(coef, columns=cols, index=df.columns)
        circleOfCorrelations2(pc_infos, ebouli)
        plt.subplot(1, 2, 2)
        dat = pd.DataFrame(pca_res, columns=cols)
        # print(dat["PC-0"])
        # print(dat["PC-1"])
        plt.scatter(dat["PC-0"].values[label_QQ],
                    dat["PC-2"].values[label_QQ],
                    color=color1)
        plt.scatter(dat["PC-0"].values[labelrandom],
                    dat["PC-2"].values[labelrandom],
                    color=color2)
        plt.xlabel("PC-1 (%s%%)" % str(ebouli[0])[:4].lstrip("0."))
        plt.ylabel("PC-3 (%s%%)" % str(ebouli[2])[:4].lstrip("0."))
        plt.title("PCA")

        plt.savefig(path_save_model + str(color_ici) +
                    "2D ACP plot comparaison pca1 - 3.png")

    #df = data_pd[data_pd['label'] == 1].drop("label", axis=1)
    #myPCA(df, colors[0])
    #myPCA_v2(df, colors[0])

    #df = data_pd[data_pd['label'] == 0].drop("label", axis=1)
    #myPCA(df, colors[-1])
    #myPCA_v2(df, colors[-1])

    #df = data_pd.drop("label", axis=1)
    #pca_res = myPCA2(df, data_pd['label'] == 1, data_pd['label'] == 0, colors[0], colors[-1])
    #myPCA2_v2(df, data_pd['label'] == 1, data_pd['label'] == 0, colors[0], colors[-1])

    max_compression = max(data_pd.compression.values) + 0.1
    max_accuracy = max(data_pd.accuracy_alone.values) + 0.1
    min_accuracy = min(data_pd.accuracy_alone.values) - 0.1

    npts = 400
    ngridx = 400
    ngridy = 400

    hamming = np.random.uniform(0, 1, npts)
    compression = np.random.uniform(0, max_compression, npts)
    accuracy = np.random.uniform(min_accuracy, max_accuracy, npts)

    _, score1, score2, score3 = get_score_masks(npts, hamming, compression,
                                                accuracy)

    hamming_i = np.linspace(-0.1, 1.1, ngridx)
    compression_i = np.linspace(-0.1, max_compression, ngridy)
    accuracy_i = np.linspace(min_accuracy, max_accuracy, ngridy)

    triang = tri.Triangulation(hamming, compression)
    interpolator = tri.LinearTriInterpolator(triang, score1)
    Xi, Yi = np.meshgrid(hamming_i, compression_i)
    zi = interpolator(Xi, Yi)

    fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(40, 15))
    CS = ax1.contour(hamming_i,
                     compression_i,
                     zi,
                     levels=14,
                     linewidths=0.5,
                     colors='k')
    cntr1 = ax1.contourf(hamming_i,
                         compression_i,
                         zi,
                         levels=14,
                         cmap="RdBu_r")
    fig.colorbar(cntr1, ax=ax1)
    ax1.clabel(CS, inline=1, fontsize=10)
    ax1.set(xlim=(0, 1), ylim=(0, max_compression))
    ax1.set_title('Metric Hamming vs Compression')
    ax1.set_xlabel('Hamming')
    ax1.set_ylabel('Compression')

    triang = tri.Triangulation(hamming, accuracy)
    interpolator = tri.LinearTriInterpolator(triang, score2)
    Xi, Yi = np.meshgrid(hamming_i, accuracy_i)
    zi = interpolator(Xi, Yi)

    CS = ax2.contour(hamming_i,
                     accuracy_i,
                     zi,
                     levels=14,
                     linewidths=0.5,
                     colors='k')
    cntr1 = ax2.contourf(hamming_i, accuracy_i, zi, levels=14, cmap="RdBu_r")
    fig.colorbar(cntr1, ax=ax2)
    ax2.clabel(CS, inline=1, fontsize=10)
    ax2.set(xlim=(0, 1), ylim=(min_accuracy, max_accuracy))
    ax2.set_title('Metric Hamming vs accuracy')
    ax2.set_xlabel('Hamming')
    ax2.set_ylabel('accuracy')

    triang = tri.Triangulation(compression, accuracy)
    interpolator = tri.LinearTriInterpolator(triang, score3)
    Xi, Yi = np.meshgrid(compression_i, accuracy_i)
    zi = interpolator(Xi, Yi)

    CS = ax3.contour(compression_i,
                     accuracy_i,
                     zi,
                     levels=14,
                     linewidths=0.5,
                     colors='k')
    cntr1 = ax3.contourf(compression_i,
                         accuracy_i,
                         zi,
                         levels=14,
                         cmap="RdBu_r")
    fig.colorbar(cntr1, ax=ax3)
    ax3.clabel(CS, inline=1, fontsize=10)
    ax3.set(xlim=(0, max_compression), ylim=(min_accuracy, max_accuracy))
    ax3.set_title('Metric Compression vs accuracy')
    ax3.set_xlabel('Compression')
    ax3.set_ylabel('accuracy')

    colors = cm.rainbow(np.linspace(0, 1, len(data_pd.compression.values)))
    ax1.plot(data_pd.hamming.values[data_pd['label'] == 1] / 32,
             data_pd.compression.values[data_pd['label'] == 1],
             'ko',
             ms=3,
             color=colors[0])
    ax2.plot(data_pd.hamming.values[data_pd['label'] == 1] / 32,
             data_pd.accuracy_alone.values[data_pd['label'] == 1],
             'ko',
             ms=3,
             color=colors[0])
    ax3.plot(data_pd.compression.values[data_pd['label'] == 1],
             data_pd.accuracy_alone.values[data_pd['label'] == 1],
             'ko',
             ms=3,
             color=colors[0])

    ax1.plot(data_pd.hamming.values[data_pd['label'] == 0] / 32,
             data_pd.compression.values[data_pd['label'] == 0],
             'ko',
             ms=3,
             color=colors[-1])
    plt.legend(["QQ MASKS", "RANDOM MASKS"])
    ax2.plot(data_pd.hamming.values[data_pd['label'] == 0] / 32,
             data_pd.accuracy_alone.values[data_pd['label'] == 0],
             'ko',
             ms=3,
             color=colors[-1])
    plt.legend(["QQ MASKS", "RANDOM MASKS"])
    ax3.plot(data_pd.compression.values[data_pd['label'] == 0],
             data_pd.accuracy_alone.values[data_pd['label'] == 0],
             'ko',
             ms=3,
             color=colors[-1])
    plt.legend(["QQ MASKS", "RANDOM MASKS"])
    plt.savefig(path_save_model + "metric.png")

    npts = len(data_pd.hamming.values[data_pd['label'] == 1] / 32)
    hamming = data_pd.hamming.values[data_pd['label'] == 1] / 32
    compression = data_pd.compression.values[data_pd['label'] == 1]
    accuracy = data_pd.accuracy_alone.values[data_pd['label'] == 1]

    score_f, score1, score2, score3 = get_score_masks(npts, hamming,
                                                      compression, accuracy)

    print("")
    print("SCORE OD MASKS:")
    print(score_f)

    print("")
    d = {'masks': all_masks, 'score': score_f}

    df = pd.DataFrame(data=d)

    df = df.sort_values(by=['score'], ascending=False)

    df.to_csv(path_save_model + "masks_and_score.csv", index=False)

    masks_to_keep = df.masks.values

    if args.select_maks_thr_score:
        masks_to_keep = masks_to_keep[df['score'] > args.thr_score]

    if args.select_maks_max_num:
        masks_to_keep = masks_to_keep[:args.max_num]

    masks_final = [[] for x in range(len(args.inputs_type))]
    for mask_ici in masks_to_keep:
        list_mask_ici = mask_ici.split("_")
        for x_index, x_value in enumerate(list_mask_ici):
            masks_final[x_index].append(int(x_value))

    X_DDT_all = np.zeros((len(masks_to_keep), len(ctdata0l ^ ctdata1l)),
                         dtype=np.float16)
    X_DDT_all_v = np.zeros((len(masks_to_keep), len(ctdata0l_v ^ ctdata1l_v)),
                           dtype=np.float16)

    feature_name_all = []
    for mask_ici_index, mask_ici in enumerate(masks_to_keep):
        X_DDT_all[mask_ici_index] = np.squeeze(dico_train[mask_ici][0])
        X_DDT_all_v[mask_ici_index] = np.squeeze(dico_val[mask_ici][0])
        feature_name_all.append(dico_train[mask_ici][1][0])

        dico_train[mask_ici] = 0
        dico_val[mask_ici] = 0

    del dico_train, dico_val

    print("NUMBER OF MASKS FINAL :", len(masks_to_keep))

    dico_final = dict(
        (k, ddt_partials_u[k]) for k in masks_to_keep if k in ddt_partials_u)

    competeur = 0
    for name_input_cic in dico_final.keys():
        competeur += len(dico_final[name_input_cic])

    print()
    print("Nmbre de parametres dans DDT:", competeur)
    print()

    X_DDT_df = pd.DataFrame(X_DDT_all.transpose(), columns=feature_name_all)
    Y_tf_df = pd.DataFrame(Y_tf)
    X_DDT_v_df = pd.DataFrame(X_DDT_all_v.transpose(),
                              columns=feature_name_all)
    Y_vf_df = pd.DataFrame(Y_vf)

    X_DDT_df.to_csv(path_save_model + "X_DDT_df.csv", index=False)
    Y_tf_df.to_csv(path_save_model + "Y_tf_df.csv", index=False)
    X_DDT_v_df.to_csv(path_save_model + "X_DDT_v_df.csv", index=False)
    Y_vf_df.to_csv(path_save_model + "Y_vf_df.csv", index=False)

    index_interet_1 = Y_tf_df.values == 1
    df_1 = X_DDT_df[index_interet_1]

    index_interet_0 = Y_tf_df.values == 0
    df_0 = X_DDT_df[index_interet_0]

    print()
    print("START COMAPRASION HISTOGRAMM SAMPLES")
    print()

    plt.figure(figsize=(20, 7))
    for i, binwidth in enumerate([5]):
        # Set up the plot
        ax = plt.subplot(1, 2, 1)

        # Draw the plot
        ax.hist(df_1.sum(axis=1) / len(feature_name_all),
                bins=int(180 / binwidth),
                color='blue',
                edgecolor='black')

        # Title and labels
        ax.set_title('Histogram of SPECK', size=30)
        ax.set_xlabel('Probability', size=22)
        ax.set_ylabel('Number of samples', size=22)

        # Set up the plot
        ax = plt.subplot(1, 2, 2)

        # Draw the plot
        ax.hist(df_0.sum(axis=1) / len(feature_name_all),
                bins=int(180 / binwidth),
                color='blue',
                edgecolor='black')

        # Title and labels
        ax.set_title('Histogram of RANDOM', size=30)
        ax.set_xlabel('Probability', size=22)
        ax.set_ylabel('Number of samples', size=22)

    plt.tight_layout()
    plt.savefig(path_save_model + "histogramm.png")

    print()
    print("START COMAPRASION HISTOGRAMM FEATURS")
    print()

    plt.figure(figsize=(25, 15))

    df_11 = df_1 / 100.0
    df_00 = df_0 / 100.0

    x1 = 100 * df_11.sum().astype(np.float64) / len(df_1)
    x2 = 100 * df_00.sum().astype(np.float64) / len(df_0)

    # Assign colors for each airline and the names
    colors = ['#E69F00', '#56B4E9']
    names = ['SPECK', 'RANDOM']

    # Make the histogram using a list of lists
    # Normalize the flights and assign colors and names
    indices = [k for k in range(len(feature_name_all))]
    # Calculate optimal width
    width = np.min(np.diff(indices)) / 3

    # Make the histogram using a list of lists
    # Normalize the flights and assign colors and names
    plt.bar(indices - width, x1, width, color='b', label='SPECK')
    plt.bar(indices, x2, width, color='r', label='RANDOM')

    # Plot formatting
    plt.legend()
    plt.xlabel(' FEATURE NUMBER ')
    plt.ylabel('Normalized SUM 1 ')
    plt.title('COMPARASION FEATURES IMPORANTANCES')

    plt.savefig(path_save_model + "COMPARASION FEATURES IMPORANTANCES.png")

    print()
    print("START INDEPENACE TEST FEATURES LABELS")
    print()

    df = X_DDT_df
    X = df
    y = Y_tf_df
    chi_scores = f_classif(X, y)
    plt.figure(figsize=(25, 15))

    p_values = pd.Series(chi_scores[1], index=X.columns)
    p_values.sort_values(ascending=False, inplace=True)

    p_values.to_csv(path_save_model +
                    "START INDEPENACE TEST FEATURES LABELS.csv")

    ax = p_values.plot.bar()
    fig = ax.get_figure()
    fig.savefig(path_save_model + "like_variables_results.png")

    print()
    print("START INDEPENACE TEST FEATURES FEATURES")
    print()

    alpha = 0.05
    res = np.zeros((len(feature_name_all), len(feature_name_all)))
    for i, _ in enumerate(tqdm(feature_name_all)):
        if i < len(feature_name_all) - 1:
            feature_name_ici = str(feature_name_all[i])
            X = df.drop(feature_name_ici, axis=1)
            y = df[feature_name_ici]
            chi_scores = f_classif(X, y)
            p_values = pd.Series(chi_scores[1], index=X.columns)
            p_values.sort_values(ascending=False, inplace=True)
            for index_index, index_v in enumerate(p_values.index):
                index_v_new = feature_name_all.index(index_v)
                res[i, int(index_v_new)] = p_values.values[index_index]
            del X, y
            if len(df.columns) > 1:
                df = df.drop(feature_name_ici, axis=1)

    df = pd.DataFrame(res, index=feature_name_all, columns=feature_name_all)
    vals = np.around(df.values, 2)
    norm = plt.Normalize(vals.min() - 1, vals.max() + 1)
    colours = plt.cm.RdBu(vals)

    fig = plt.figure(figsize=(100, 100))
    ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])

    the_table = plt.table(cellText=vals,
                          rowLabels=df.index,
                          colLabels=df.columns,
                          colWidths=[0.03] * vals.shape[1],
                          loc='center',
                          cellColours=colours)

    plt.savefig(path_save_model + "COMPARASION INTRA FEATURES XI 2.png")
    df.to_csv(path_save_model + "COMPARASION INTRA FEATURES XI 2.csv",
              index=False)

    return dico_final, masks_final, X_DDT_all.transpose(
    ), X_DDT_all_v.transpose(), feature_name_all, Y_tf, Y_vf