Exemple #1
0
def get_target_dataset(Data_Band_Scaler, GroundTruth, class_num, shot_num_per_class):
    train_loader, test_loader, imdb_da_train,G,RandPerm,Row, Column,nTrain = get_train_test_loader(Data_Band_Scaler=Data_Band_Scaler,  GroundTruth=GroundTruth, \
                                                                     class_num=class_num,shot_num_per_class=shot_num_per_class)  # 9 classes and 5 labeled samples per class
    train_datas, train_labels = train_loader.__iter__().next()
    print('train labels:', train_labels)
    print('size of train datas:', train_datas.shape) # size of train datas: torch.Size([45, 103, 9, 9])

    print(imdb_da_train.keys())
    print(imdb_da_train['data'].shape)  # (9, 9, 100, 225)
    print(imdb_da_train['Labels'])
    del Data_Band_Scaler, GroundTruth

    # target data with data augmentation
    target_da_datas = np.transpose(imdb_da_train['data'], (3, 2, 0, 1))  # (9,9,100, 1800)->(1800, 100, 9, 9)
    print(target_da_datas.shape)
    target_da_labels = imdb_da_train['Labels']  # (1800,)
    print('target data augmentation label:', target_da_labels)

    # metatrain data for few-shot classification
    target_da_train_set = {}
    for class_, path in zip(target_da_labels, target_da_datas):
        if class_ not in target_da_train_set:
            target_da_train_set[class_] = []
        target_da_train_set[class_].append(path)
    target_da_metatrain_data = target_da_train_set
    print(target_da_metatrain_data.keys())

    # target domain : batch samples for domian adaptation
    print(imdb_da_train['data'].shape)  # (9, 9, 100, 225)
    print(imdb_da_train['Labels'])
    target_dataset = utils.matcifar(imdb_da_train, train=True, d=3, medicinal=0)
    target_loader = torch.utils.data.DataLoader(target_dataset, batch_size=128, shuffle=True, num_workers=0)
    del target_dataset

    return train_loader, test_loader, target_da_metatrain_data, target_loader,G,RandPerm,Row, Column,nTrain
Exemple #2
0
def get_train_test_loader(Data_Band_Scaler, GroundTruth, class_num,
                          shot_num_per_class):
    print(Data_Band_Scaler.shape)  # (610, 340, 103)
    [nRow, nColumn, nBand] = Data_Band_Scaler.shape
    '''label start'''
    num_class = int(np.max(GroundTruth))
    data_band_scaler = utils.flip(Data_Band_Scaler)
    groundtruth = utils.flip(GroundTruth)
    del Data_Band_Scaler
    del GroundTruth

    HalfWidth = 4
    G = groundtruth[nRow - HalfWidth:2 * nRow + HalfWidth,
                    nColumn - HalfWidth:2 * nColumn + HalfWidth]
    data = data_band_scaler[nRow - HalfWidth:2 * nRow + HalfWidth,
                            nColumn - HalfWidth:2 * nColumn + HalfWidth, :]

    [Row, Column] = np.nonzero(G)  # (10249,) (10249,)
    # print(Row)
    del data_band_scaler
    del groundtruth

    nSample = np.size(Row)
    print('number of sample', nSample)

    # Sampling samples
    train = {}
    test = {}
    da_train = {}  # Data Augmentation
    m = int(np.max(G))  # 9
    nlabeled = TEST_LSAMPLE_NUM_PER_CLASS
    print('labeled number per class:', nlabeled)
    print((200 - nlabeled) / nlabeled + 1)
    print(math.ceil((200 - nlabeled) / nlabeled) + 1)

    for i in range(m):
        indices = [
            j for j, x in enumerate(Row.ravel().tolist())
            if G[Row[j], Column[j]] == i + 1
        ]
        np.random.shuffle(indices)
        nb_val = shot_num_per_class
        train[i] = indices[:nb_val]
        da_train[i] = []
        for j in range(math.ceil((200 - nlabeled) / nlabeled) + 1):
            da_train[i] += indices[:nb_val]
        test[i] = indices[nb_val:]

    train_indices = []
    test_indices = []
    da_train_indices = []
    for i in range(m):
        train_indices += train[i]
        test_indices += test[i]
        da_train_indices += da_train[i]
    np.random.shuffle(test_indices)

    print('the number of train_indices:', len(train_indices))  # 520
    print('the number of test_indices:', len(test_indices))  # 9729
    print('the number of train_indices after data argumentation:',
          len(da_train_indices))  # 520
    print('labeled sample indices:', train_indices)

    nTrain = len(train_indices)
    nTest = len(test_indices)
    da_nTrain = len(da_train_indices)

    imdb = {}
    imdb['data'] = np.zeros(
        [2 * HalfWidth + 1, 2 * HalfWidth + 1, nBand, nTrain + nTest],
        dtype=np.float32)  # (9,9,100,n)
    imdb['Labels'] = np.zeros([nTrain + nTest], dtype=np.int64)
    imdb['set'] = np.zeros([nTrain + nTest], dtype=np.int64)

    RandPerm = train_indices + test_indices

    RandPerm = np.array(RandPerm)

    for iSample in range(nTrain + nTest):
        imdb['data'][:, :, :,
                     iSample] = data[Row[RandPerm[iSample]] -
                                     HalfWidth:Row[RandPerm[iSample]] +
                                     HalfWidth + 1, Column[RandPerm[iSample]] -
                                     HalfWidth:Column[RandPerm[iSample]] +
                                     HalfWidth + 1, :]
        imdb['Labels'][iSample] = G[Row[RandPerm[iSample]],
                                    Column[RandPerm[iSample]]].astype(np.int64)

    imdb['Labels'] = imdb['Labels'] - 1  # 1-16 0-15
    imdb['set'] = np.hstack(
        (np.ones([nTrain]), 3 * np.ones([nTest]))).astype(np.int64)
    print('Data is OK.')

    train_dataset = utils.matcifar(imdb, train=True, d=3, medicinal=0)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=class_num *
                                               shot_num_per_class,
                                               shuffle=False,
                                               num_workers=0)
    del train_dataset

    test_dataset = utils.matcifar(imdb, train=False, d=3, medicinal=0)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=100,
                                              shuffle=False,
                                              num_workers=0)
    del test_dataset
    del imdb

    # Data Augmentation for target domain for training
    imdb_da_train = {}
    imdb_da_train['data'] = np.zeros(
        [2 * HalfWidth + 1, 2 * HalfWidth + 1, nBand, da_nTrain],
        dtype=np.float32)  # (9,9,100,n)
    imdb_da_train['Labels'] = np.zeros([da_nTrain], dtype=np.int64)
    imdb_da_train['set'] = np.zeros([da_nTrain], dtype=np.int64)

    da_RandPerm = np.array(da_train_indices)
    for iSample in range(da_nTrain):  # radiation_noise,flip_augmentation
        imdb_da_train['data'][:, :, :, iSample] = utils.radiation_noise(
            data[Row[da_RandPerm[iSample]] -
                 HalfWidth:Row[da_RandPerm[iSample]] + HalfWidth + 1,
                 Column[da_RandPerm[iSample]] -
                 HalfWidth:Column[da_RandPerm[iSample]] + HalfWidth + 1, :])
        imdb_da_train['Labels'][iSample] = G[
            Row[da_RandPerm[iSample]],
            Column[da_RandPerm[iSample]]].astype(np.int64)

    imdb_da_train['Labels'] = imdb_da_train['Labels'] - 1  # 1-16 0-15
    imdb_da_train['set'] = np.ones([da_nTrain]).astype(np.int64)
    print('ok')

    return train_loader, test_loader, imdb_da_train, G, RandPerm, Row, Column, nTrain
Exemple #3
0
        image_transpose = np.transpose(data[class_][i],
                                       (2, 0, 1))  # (9,9,100)-> (100,9,9)
        data[class_][i] = image_transpose

# source few-shot classification data
metatrain_data = data
print(len(metatrain_data.keys()), metatrain_data.keys())
del data

# source domain adaptation data
print(source_imdb['data'].shape)  # (77592, 9, 9, 100)
source_imdb['data'] = source_imdb['data'].transpose(
    (1, 2, 3, 0))  #(9, 9, 100, 77592)
print(source_imdb['data'].shape)  # (77592, 9, 9, 100)
print(source_imdb['Labels'])
source_dataset = utils.matcifar(source_imdb, train=True, d=3, medicinal=0)
source_loader = torch.utils.data.DataLoader(source_dataset,
                                            batch_size=128,
                                            shuffle=True,
                                            num_workers=0)
del source_dataset, source_imdb

## target domain data set
# load target domain data set
test_data = 'datasets/salinas/salinas_corrected.mat'
test_label = 'datasets/salinas/salinas_gt.mat'

Data_Band_Scaler, GroundTruth = utils.load_data(test_data, test_label)


# get train_loader and test_loader