def test_evaluator(config): transformer = volume_normalize('background') db = layout_coco(config, 'val', transform=transformer) output_dir = osp.join(db.cfg.model_dir, 'test_evaluator_coco') maybe_create(output_dir) ev = evaluator(db) for i in range(0, len(db), 2): # print('--------------------------------------') entry_1 = db[i] entry_2 = db[i+1] scene_1 = db.scenedb[i] scene_2 = db.scenedb[i+1] name_1 = osp.splitext(osp.basename(entry_1['color_path']))[0] name_2 = osp.splitext(osp.basename(entry_2['color_path']))[0] graph_1 = scene_graph(db, scene_1, entry_1['out_inds'], True) graph_2 = scene_graph(db, scene_2, entry_2['out_inds'], False) color_1 = cv2.imread(entry_1['color_path'], cv2.IMREAD_COLOR) color_2 = cv2.imread(entry_2['color_path'], cv2.IMREAD_COLOR) color_1, _, _ = create_squared_image(color_1) color_2, _, _ = create_squared_image(color_2) color_1 = cv2.resize(color_1, (config.draw_size[0], config.draw_size[1])) color_2 = cv2.resize(color_2, (config.draw_size[0], config.draw_size[1])) color_1 = visualize_unigram(config, color_1, graph_1.unigrams, (225, 0, 0)) color_2 = visualize_unigram(config, color_2, graph_2.unigrams, (225, 0, 0)) color_1 = visualize_bigram(config, color_1, graph_1.bigrams, (0, 255, 255)) color_2 = visualize_bigram(config, color_2, graph_2.bigrams, (0, 255, 255)) scores = ev.evaluate_graph(graph_1, graph_2) color_1 = visualize_unigram(config, color_1, ev.common_pred_unigrams, (0, 225, 0)) color_2 = visualize_unigram(config, color_2, ev.common_gt_unigrams, (0, 225, 0)) color_1 = visualize_bigram(config, color_1, ev.common_pred_bigrams, (255, 255, 0)) color_2 = visualize_bigram(config, color_2, ev.common_gt_bigrams, (255, 255, 0)) info = eval_info(config, scores[None, ...]) plt.switch_backend('agg') fig = plt.figure(figsize=(16, 10)) title = entry_1['sentence'] + '\n' + entry_2['sentence'] + '\n' title += 'unigram f3: %f, bigram f3: %f, bigram sim: %f\n'%(info.unigram_F3()[0], info.bigram_F3()[0], info.bigram_coord()[0]) title += 'scale: %f, ratio: %f, coord: %f \n'%(info.scale()[0], info.ratio()[0], info.unigram_coord()[0]) plt.suptitle(title) plt.subplot(1, 2, 1); plt.imshow(color_1[:,:,::-1]); plt.axis('off') plt.subplot(1, 2, 2); plt.imshow(color_2[:,:,::-1]); plt.axis('off') out_path = osp.join(output_dir, name_1+'_'+name_2+'.png') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) if i > 40: break
def test_simulator(config): plt.switch_backend('agg') output_dir = osp.join(config.model_dir, 'simulator') maybe_create(output_dir) transformer = volume_normalize('background') db = layout_coco(config, 'val', transform=transformer) loader = DataLoader(db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) env = simulator(db, config.batch_size) env.reset() for cnt, batched in enumerate(loader): out_inds = batched['out_inds'].numpy() gt_paths = batched['color_path'] img_inds = batched['image_idx'] sents = batched['sentence'] sequences = [] for i in range(out_inds.shape[1]): frames = env.batch_render_to_pytorch(out_inds[:, i, :]) sequences.append(frames) seqs1 = torch.stack(sequences, dim=1) print('seqs1', seqs1.size()) seqs2 = env.batch_redraw(return_sequence=True) seqs = seqs2 for i in range(len(seqs)): imgs = seqs[i] image_idx = img_inds[i] name = '%03d_' % i + str(image_idx.item()).zfill(9) out_path = osp.join(output_dir, name + '.png') color = cv2.imread(gt_paths[i], cv2.IMREAD_COLOR) color, _, _ = create_squared_image(color) fig = plt.figure(figsize=(32, 16)) plt.suptitle(sents[i]) for j in range(len(imgs)): plt.subplot(3, 5, j + 1) plt.imshow(imgs[j]) plt.axis('off') plt.subplot(3, 5, 15) plt.imshow(color[:, :, ::-1]) plt.axis('off') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) break
def configure_output_dir(d=None): """ Set output directory to d, or to /tmp/somerandomnumber if d is None """ G.output_dir = d or "/tmp/experiments/%i"%int(time.time()) # assert not osp.exists(G.output_dir), "Log dir %s already exists! Delete it first or use a different dir"%G.output_dir # os.makedirs(G.output_dir) maybe_create(G.output_dir) G.output_file = open(osp.join(G.output_dir, "log.txt"), 'w') atexit.register(G.output_file.close) print(colorize("Logging data to %s"%G.output_file.name, 'green', bold=True))
def test_topk(config): import os.path as osp from dataset import imdb from utils import image_normalize, maybe_create from torch.utils.data import DataLoader import matplotlib.pyplot as plt transformer = image_normalize('background') db = imdb(config, split='test', transform=transformer) net = DrawModel(db) output_dir = osp.join(config.model_dir, 'test_topk') maybe_create(output_dir) pretrained_path = osp.join('data/caches/supervised_abstract.pkl') assert osp.exists(pretrained_path) if config.cuda: states = torch.load(pretrained_path) else: states = torch.load(pretrained_path, map_location=lambda storage, loc: storage) net.load_state_dict(states) plt.switch_backend('agg') for i in range(len(db)): entry = db[i] scene = db.scenedb[i] input_inds_np = entry['word_inds'] input_lens_np = entry['word_lens'] input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0) input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0) if config.cuda: input_inds = input_inds.cuda() input_lens = input_lens.cuda() net.eval() with torch.no_grad(): env = net.topk_inference(input_inds, input_lens, config.beam_size, -1) frames = env.batch_redraw(return_sequence=True) gt_img = cv2.imread(entry['color_path'], cv2.IMREAD_COLOR) for j in range(len(frames)): fig = plt.figure(figsize=(40, 20)) title = entry['sentence'] # title = title + '\n reward: %f, scores: %f, %f, %f, %f, %f'%(rews[j], *(scores[j])) plt.suptitle(title, fontsize=50) imgs = frames[j] for k in range(len(imgs)): plt.subplot(3, 4, k + 1) plt.imshow(imgs[k, :, :, ::-1]) plt.axis('off') plt.subplot(3, 4, 12) plt.imshow(gt_img[:, :, ::-1]) plt.axis('off') output_path = osp.join(output_dir, '%03d_%03d.png' % (i, j)) fig.savefig(output_path, bbox_inches='tight') plt.close(fig) if i > 0: break
def test_model(config): transformer = image_normalize('background') db = abstract_scene(config, 'val', transform=transformer) net = DrawModel(db) plt.switch_backend('agg') output_dir = osp.join(config.model_dir, 'test_model') maybe_create(output_dir) pretrained_path = osp.join( '../data/caches/abstract_ckpts/supervised_abstract_top1.pkl') assert osp.exists(pretrained_path) if config.cuda: states = torch.load(pretrained_path) else: states = torch.load(pretrained_path, map_location=lambda storage, loc: storage) net.load_state_dict(states) loader = DataLoader(db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) net.eval() for cnt, batched in enumerate(loader): word_inds = batched['word_inds'].long() word_lens = batched['word_lens'].long() bg_images = batched['background'].float() fg_inds = batched['fg_inds'].long() gt_inds = batched['out_inds'].long() gt_msks = batched['out_msks'].float() hmaps = batched['hmaps'].float() fg_onehots = indices2onehots(fg_inds, config.output_cls_size) fg_onehots = fg_onehots inf_outs = net.teacher_forcing(word_inds, word_lens, bg_images, fg_onehots, hmaps) print('teacher forcing') print('obj_logits ', inf_outs['obj_logits'].size()) print('coord_logits ', inf_outs['coord_logits'].size()) print('attri_logits ', inf_outs['attri_logits'].size()) if config.what_attn: print('what_att_logits ', inf_outs['what_att_logits'].size()) if config.where_attn > 0: print('where_att_logits ', inf_outs['where_att_logits'].size()) print('----------------------') # inf_outs, env = net(word_inds, word_lens, -1, 0, 0, gt_inds) inf_outs, env = net(word_inds, word_lens, 0, 1, 0, None) print('scheduled sampling') print('obj_logits ', inf_outs['obj_logits'].size()) print('coord_logits ', inf_outs['coord_logits'].size()) print('attri_logits ', inf_outs['attri_logits'].size()) if config.what_attn: print('what_att_logits ', inf_outs['what_att_logits'].size()) if config.where_attn > 0: print('where_att_logits ', inf_outs['where_att_logits'].size()) print('----------------------') pred_out_inds, pred_out_msks = env.get_batch_inds_and_masks() print('pred_out_inds', pred_out_inds[0, 1], pred_out_inds.shape) print('gt_inds', gt_inds[0, 1], gt_inds.size()) print('pred_out_msks', pred_out_msks[0, 1], pred_out_msks.shape) print('gt_msks', gt_msks[0, 1], gt_msks.size()) batch_frames = env.batch_redraw(True) scene_inds = batched['scene_idx'] for i in range(len(scene_inds)): sid = scene_inds[i] entry = db[sid] name = osp.splitext(osp.basename(entry['color_path']))[0] imgs = batch_frames[i] out_path = osp.join(output_dir, name + '.png') fig = plt.figure(figsize=(16, 8)) plt.suptitle(entry['sentence']) for j in range(len(imgs)): plt.subplot(4, 3, j + 1) plt.imshow(imgs[j, :, :, ::-1].astype(np.uint8)) plt.axis('off') target = cv2.imread(entry['color_path'], cv2.IMREAD_COLOR) plt.subplot(4, 3, 12) plt.imshow(target[:, :, ::-1]) plt.axis('off') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) break
def test_simulator(config): plt.switch_backend('agg') output_dir = osp.join(config.model_dir, 'simulator') maybe_create(output_dir) transformer = image_normalize('background') db = abstract_scene(config, 'val', transform=transformer) loader = DataLoader(db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) env = simulator(db, config.batch_size) env.reset() for cnt, batched in enumerate(loader): out_inds = batched['out_inds'].long().numpy() gt_paths = batched['color_path'] img_inds = batched['image_idx'] sents = batched['sentence'] sequences = [] masks = [] for i in range(out_inds.shape[1]): frames = env.batch_render_to_pytorch(out_inds[:, i]) frames = tensor_to_img(frames) msks = env.batch_location_maps(out_inds[:, i, 3]) for j in range(len(frames)): frame = frames[j] msk = cv2.resize(msks[j], (frame.shape[0], frame.shape[1]), cv2.INTER_NEAREST) frames[j] = frame * (1.0 - msk[..., None]) sequences.append(frames) seqs1 = np.stack(sequences, 1) print('seqs1', seqs1.shape) seqs2 = env.batch_redraw(return_sequence=True) seqs = seqs2 for i in range(len(seqs)): imgs = seqs[i] image_idx = img_inds[i] name = '%03d_' % i + str(image_idx).zfill(9) out_path = osp.join(output_dir, name + '.png') color = cv2.imread(gt_paths[i], cv2.IMREAD_COLOR) # color, _, _ = create_squared_image(color) fig = plt.figure(figsize=(32, 16)) plt.suptitle(sents[i]) for j in range(len(imgs)): plt.subplot(3, 5, j + 1) plt.imshow(imgs[j, :, :, ::-1]) plt.axis('off') plt.subplot(3, 5, 15) plt.imshow(color[:, :, ::-1]) plt.axis('off') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) break