Exemple #1
0
def test_evaluator(config):
    transformer = volume_normalize('background')
    db = layout_coco(config, 'val', transform=transformer)
    output_dir = osp.join(db.cfg.model_dir, 'test_evaluator_coco')
    maybe_create(output_dir)

    ev = evaluator(db)
    for i in range(0, len(db), 2):
        # print('--------------------------------------')
        entry_1 = db[i]
        entry_2 = db[i+1]
        scene_1 = db.scenedb[i]
        scene_2 = db.scenedb[i+1]
        name_1 = osp.splitext(osp.basename(entry_1['color_path']))[0]
        name_2 = osp.splitext(osp.basename(entry_2['color_path']))[0]

        graph_1 = scene_graph(db, scene_1, entry_1['out_inds'], True)
        graph_2 = scene_graph(db, scene_2, entry_2['out_inds'], False)

        color_1 = cv2.imread(entry_1['color_path'], cv2.IMREAD_COLOR)
        color_2 = cv2.imread(entry_2['color_path'], cv2.IMREAD_COLOR)
        color_1, _, _ = create_squared_image(color_1)
        color_2, _, _ = create_squared_image(color_2)
        color_1 = cv2.resize(color_1, (config.draw_size[0], config.draw_size[1]))
        color_2 = cv2.resize(color_2, (config.draw_size[0], config.draw_size[1]))

        color_1 = visualize_unigram(config, color_1, graph_1.unigrams, (225, 0, 0))
        color_2 = visualize_unigram(config, color_2, graph_2.unigrams, (225, 0, 0))
        color_1 = visualize_bigram(config, color_1, graph_1.bigrams, (0, 255, 255))
        color_2 = visualize_bigram(config, color_2, graph_2.bigrams, (0, 255, 255))

        scores = ev.evaluate_graph(graph_1, graph_2)

        color_1 = visualize_unigram(config, color_1, ev.common_pred_unigrams, (0, 225, 0))
        color_2 = visualize_unigram(config, color_2, ev.common_gt_unigrams,   (0, 225, 0))
        color_1 = visualize_bigram(config, color_1, ev.common_pred_bigrams, (255, 255, 0))
        color_2 = visualize_bigram(config, color_2, ev.common_gt_bigrams, (255, 255, 0))

        info = eval_info(config, scores[None, ...])

        plt.switch_backend('agg')
        fig = plt.figure(figsize=(16, 10))
        title = entry_1['sentence'] + '\n' + entry_2['sentence'] + '\n'
        title += 'unigram f3: %f, bigram f3: %f, bigram sim: %f\n'%(info.unigram_F3()[0], info.bigram_F3()[0], info.bigram_coord()[0])
        title += 'scale: %f, ratio: %f, coord: %f \n'%(info.scale()[0], info.ratio()[0], info.unigram_coord()[0])

        
        plt.suptitle(title)
        plt.subplot(1, 2, 1); plt.imshow(color_1[:,:,::-1]); plt.axis('off')
        plt.subplot(1, 2, 2); plt.imshow(color_2[:,:,::-1]); plt.axis('off')

        out_path = osp.join(output_dir, name_1+'_'+name_2+'.png')
        fig.savefig(out_path, bbox_inches='tight')
        plt.close(fig)

        if i > 40:
            break
Exemple #2
0
def test_simulator(config):
    plt.switch_backend('agg')
    output_dir = osp.join(config.model_dir, 'simulator')
    maybe_create(output_dir)

    transformer = volume_normalize('background')
    db = layout_coco(config, 'val', transform=transformer)

    loader = DataLoader(db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    env = simulator(db, config.batch_size)
    env.reset()

    for cnt, batched in enumerate(loader):
        out_inds = batched['out_inds'].numpy()
        gt_paths = batched['color_path']
        img_inds = batched['image_idx']
        sents = batched['sentence']

        sequences = []
        for i in range(out_inds.shape[1]):
            frames = env.batch_render_to_pytorch(out_inds[:, i, :])
            sequences.append(frames)
        seqs1 = torch.stack(sequences, dim=1)
        print('seqs1', seqs1.size())
        seqs2 = env.batch_redraw(return_sequence=True)

        seqs = seqs2
        for i in range(len(seqs)):
            imgs = seqs[i]
            image_idx = img_inds[i]
            name = '%03d_' % i + str(image_idx.item()).zfill(9)
            out_path = osp.join(output_dir, name + '.png')
            color = cv2.imread(gt_paths[i], cv2.IMREAD_COLOR)
            color, _, _ = create_squared_image(color)

            fig = plt.figure(figsize=(32, 16))
            plt.suptitle(sents[i])

            for j in range(len(imgs)):
                plt.subplot(3, 5, j + 1)
                plt.imshow(imgs[j])
                plt.axis('off')

            plt.subplot(3, 5, 15)
            plt.imshow(color[:, :, ::-1])
            plt.axis('off')

            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)

        break
Exemple #3
0
def configure_output_dir(d=None):
    """
    Set output directory to d, or to /tmp/somerandomnumber if d is None
    """
    G.output_dir = d or "/tmp/experiments/%i"%int(time.time())
    # assert not osp.exists(G.output_dir), "Log dir %s already exists! Delete it first or use a different dir"%G.output_dir
    # os.makedirs(G.output_dir)
    maybe_create(G.output_dir)
    G.output_file = open(osp.join(G.output_dir, "log.txt"), 'w')
    atexit.register(G.output_file.close)
    print(colorize("Logging data to %s"%G.output_file.name, 'green', bold=True))
Exemple #4
0
def test_topk(config):
    import os.path as osp
    from dataset import imdb
    from utils import image_normalize, maybe_create
    from torch.utils.data import DataLoader
    import matplotlib.pyplot as plt

    transformer = image_normalize('background')
    db = imdb(config, split='test', transform=transformer)
    net = DrawModel(db)

    output_dir = osp.join(config.model_dir, 'test_topk')
    maybe_create(output_dir)

    pretrained_path = osp.join('data/caches/supervised_abstract.pkl')
    assert osp.exists(pretrained_path)
    if config.cuda:
        states = torch.load(pretrained_path)
    else:
        states = torch.load(pretrained_path,
                            map_location=lambda storage, loc: storage)
    net.load_state_dict(states)

    plt.switch_backend('agg')

    for i in range(len(db)):
        entry = db[i]
        scene = db.scenedb[i]

        input_inds_np = entry['word_inds']
        input_lens_np = entry['word_lens']

        input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0)
        input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0)
        if config.cuda:
            input_inds = input_inds.cuda()
            input_lens = input_lens.cuda()

        net.eval()
        with torch.no_grad():
            env = net.topk_inference(input_inds, input_lens, config.beam_size,
                                     -1)
        frames = env.batch_redraw(return_sequence=True)
        gt_img = cv2.imread(entry['color_path'], cv2.IMREAD_COLOR)
        for j in range(len(frames)):
            fig = plt.figure(figsize=(40, 20))
            title = entry['sentence']
            # title = title + '\n reward: %f, scores: %f, %f, %f, %f, %f'%(rews[j], *(scores[j]))
            plt.suptitle(title, fontsize=50)
            imgs = frames[j]
            for k in range(len(imgs)):
                plt.subplot(3, 4, k + 1)
                plt.imshow(imgs[k, :, :, ::-1])
                plt.axis('off')
            plt.subplot(3, 4, 12)
            plt.imshow(gt_img[:, :, ::-1])
            plt.axis('off')
            output_path = osp.join(output_dir, '%03d_%03d.png' % (i, j))
            fig.savefig(output_path, bbox_inches='tight')
            plt.close(fig)

        if i > 0:
            break
Exemple #5
0
def test_model(config):
    transformer = image_normalize('background')
    db = abstract_scene(config, 'val', transform=transformer)
    net = DrawModel(db)

    plt.switch_backend('agg')
    output_dir = osp.join(config.model_dir, 'test_model')
    maybe_create(output_dir)

    pretrained_path = osp.join(
        '../data/caches/abstract_ckpts/supervised_abstract_top1.pkl')
    assert osp.exists(pretrained_path)
    if config.cuda:
        states = torch.load(pretrained_path)
    else:
        states = torch.load(pretrained_path,
                            map_location=lambda storage, loc: storage)
    net.load_state_dict(states)

    loader = DataLoader(db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    net.eval()
    for cnt, batched in enumerate(loader):
        word_inds = batched['word_inds'].long()
        word_lens = batched['word_lens'].long()
        bg_images = batched['background'].float()

        fg_inds = batched['fg_inds'].long()
        gt_inds = batched['out_inds'].long()
        gt_msks = batched['out_msks'].float()
        hmaps = batched['hmaps'].float()

        fg_onehots = indices2onehots(fg_inds, config.output_cls_size)
        fg_onehots = fg_onehots

        inf_outs = net.teacher_forcing(word_inds, word_lens, bg_images,
                                       fg_onehots, hmaps)
        print('teacher forcing')
        print('obj_logits ', inf_outs['obj_logits'].size())
        print('coord_logits ', inf_outs['coord_logits'].size())
        print('attri_logits ', inf_outs['attri_logits'].size())
        if config.what_attn:
            print('what_att_logits ', inf_outs['what_att_logits'].size())
        if config.where_attn > 0:
            print('where_att_logits ', inf_outs['where_att_logits'].size())
        print('----------------------')
        # inf_outs, env = net(word_inds, word_lens, -1, 0, 0, gt_inds)
        inf_outs, env = net(word_inds, word_lens, 0, 1, 0, None)
        print('scheduled sampling')
        print('obj_logits ', inf_outs['obj_logits'].size())
        print('coord_logits ', inf_outs['coord_logits'].size())
        print('attri_logits ', inf_outs['attri_logits'].size())
        if config.what_attn:
            print('what_att_logits ', inf_outs['what_att_logits'].size())
        if config.where_attn > 0:
            print('where_att_logits ', inf_outs['where_att_logits'].size())
        print('----------------------')

        pred_out_inds, pred_out_msks = env.get_batch_inds_and_masks()
        print('pred_out_inds', pred_out_inds[0, 1], pred_out_inds.shape)
        print('gt_inds', gt_inds[0, 1], gt_inds.size())
        print('pred_out_msks', pred_out_msks[0, 1], pred_out_msks.shape)
        print('gt_msks', gt_msks[0, 1], gt_msks.size())

        batch_frames = env.batch_redraw(True)
        scene_inds = batched['scene_idx']
        for i in range(len(scene_inds)):
            sid = scene_inds[i]
            entry = db[sid]
            name = osp.splitext(osp.basename(entry['color_path']))[0]
            imgs = batch_frames[i]
            out_path = osp.join(output_dir, name + '.png')
            fig = plt.figure(figsize=(16, 8))
            plt.suptitle(entry['sentence'])
            for j in range(len(imgs)):
                plt.subplot(4, 3, j + 1)
                plt.imshow(imgs[j, :, :, ::-1].astype(np.uint8))
                plt.axis('off')

            target = cv2.imread(entry['color_path'], cv2.IMREAD_COLOR)
            plt.subplot(4, 3, 12)
            plt.imshow(target[:, :, ::-1])
            plt.axis('off')

            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)
        break
Exemple #6
0
def test_simulator(config):
    plt.switch_backend('agg')

    output_dir = osp.join(config.model_dir, 'simulator')
    maybe_create(output_dir)

    transformer = image_normalize('background')
    db = abstract_scene(config, 'val', transform=transformer)

    loader = DataLoader(db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    env = simulator(db, config.batch_size)
    env.reset()

    for cnt, batched in enumerate(loader):
        out_inds = batched['out_inds'].long().numpy()
        gt_paths = batched['color_path']
        img_inds = batched['image_idx']
        sents = batched['sentence']

        sequences = []
        masks = []
        for i in range(out_inds.shape[1]):
            frames = env.batch_render_to_pytorch(out_inds[:, i])
            frames = tensor_to_img(frames)
            msks = env.batch_location_maps(out_inds[:, i, 3])
            for j in range(len(frames)):
                frame = frames[j]
                msk = cv2.resize(msks[j], (frame.shape[0], frame.shape[1]),
                                 cv2.INTER_NEAREST)
                frames[j] = frame * (1.0 - msk[..., None])
            sequences.append(frames)
        seqs1 = np.stack(sequences, 1)
        print('seqs1', seqs1.shape)
        seqs2 = env.batch_redraw(return_sequence=True)

        seqs = seqs2
        for i in range(len(seqs)):
            imgs = seqs[i]
            image_idx = img_inds[i]
            name = '%03d_' % i + str(image_idx).zfill(9)
            out_path = osp.join(output_dir, name + '.png')
            color = cv2.imread(gt_paths[i], cv2.IMREAD_COLOR)
            # color, _, _ = create_squared_image(color)

            fig = plt.figure(figsize=(32, 16))
            plt.suptitle(sents[i])

            for j in range(len(imgs)):
                plt.subplot(3, 5, j + 1)
                plt.imshow(imgs[j, :, :, ::-1])
                plt.axis('off')

            plt.subplot(3, 5, 15)
            plt.imshow(color[:, :, ::-1])
            plt.axis('off')

            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)

        break